skip to main content

Search for: All records

Creators/Authors contains: "Shah, Julie A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In safety-critical environments, robots need to reliably recognize human activity to be effective and trust-worthy partners. Since most human activity recognition (HAR) approaches rely on unimodal sensor data (e.g. motion capture or wearable sensors), it is unclear how the relationship between the sensor modality and motion granularity (e.g. gross or fine) of the activities impacts classification accuracy. To our knowledge, we are the first to investigate the efficacy of using motion capture as compared to wearable sensor data for recognizing human motion in manufacturing settings. We introduce the UCSD-MIT Human Motion dataset, composed of two assembly tasks that entail either gross or fine-grained motion. For both tasks, we compared the accuracy of a Vicon motion capture system to a Myo armband using three widely used HAR algorithms. We found that motion capture yielded higher accuracy than the wearable sensor for gross motion recognition (up to 36.95%), while the wearable sensor yielded higher accuracy for fine-grained motion (up to 28.06%). These results suggest that these sensor modalities are complementary, and that robots may benefit from systems that utilize multiple modalities to simultaneously, but independently, detect gross and fine-grained motion. Our findings will help guide researchers in numerous fields of robotics includingmore »learning from demonstration and grasping to effectively choose sensor modalities that are most suitable for their applications.« less
  2. Worldwide, manufacturers are reimagining the future of their workforce and its connection to technology. Rather than replacing humans, Industry 5.0 explores how humans and robots can best complement one another's unique strengths. However, realizing this vision requires an in-depth understanding of how workers view the positive and negative attributes of their jobs, and the place of robots within it. In this paper, we explore the relationship between work attributes and automation goals by engaging in field research at a manufacturing plant. We conducted 50 face-to-face interviews with assembly-line workers (n=50), which we analyzed using discourse analysis and social constructivist methods. We found that the work attributes deemed most positive by participants include social interaction, movement and exercise, (human) autonomy, problem solving, task variety, and building with their hands. The main negative work attributes included health and safety issues, feeling rushed, and repetitive work. We identified several ways robots could help reduce negative work attributes and enhance positive ones, such as reducing work interruptions and cultivating physical and psychological well-being. Based on our findings, we created a set of integration considerations for organizations planning to deploy robotics technology, and discuss how the manufacturing and HRI communities can explore these ideas inmore »the future.« less