skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shah, Om"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Vision dimensionality during minimally invasive surgery is a critical contributor to patient success. Traditional visualizations of the surgical scene are 2D camera streams that obfuscate depth perception inside the abdominal cavity. A lack of depth in surgical views cause surgeons to miss tissue targets, induce blood loss, and incorrectly assess deformation. 3D sensors, while offering key depth information, are expensive and often incompatible with current sterilization techniques. Furthermore, methods inferring a 3D space from stereoscopic video struggle with the inherent lack of unique features in the biological domain. We present an application of deep learning models that can assess simple binary occupancy from a single camera perspective to recreate the surgical scene in high-fidelity. Our quantitative results (IoU=O.82, log loss=0.346) indicate a strong representational capability for structure in surgical scenes, enabling surgeons to reduce patient injury during minimally invasive surgery. 
    more » « less