skip to main content

Search for: All records

Creators/Authors contains: "Shah, Vijay K."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Despite the promising attributes of the 12 GHz band for expanding terrestrial 5G network’s capacity and coverage, interference between coexisting networks remains a major issue. This paper develops a simulation-based evaluation framework and investigates the harmful interference between the 5G radio links and incumbent fixed non-geostationary satellite orbit (NGSO) fixed satellite services (FSS) receivers of the 12 GHz band. A variety of features including actual deployment locations of 5G base stations (BSs) and fixed NGSO FSS receivers, industry standardized beamforming at BSs, directional signal reception at FSS receivers, realistic propagation channels with obstruction from buildings, and channel scheduling at 5G BSs are incorporated in the interference study. Simulation results conducted in a realistic urban-micro deployment scenario confirm that the terrestrial 5G networks with directional BSs can coexist in the 12GHz band by suitably selecting exclusion zone’s radius around the FSS receiver. Simulation results also show that interference in the coexisting network can be notably reduced by appropriately activating BSs in the 12 GHz band based on their locations and surroundings. 
    more » « less
    Free, publicly-accessible full text available May 1, 2024
  2. Free, publicly-accessible full text available February 1, 2024
  3. Free, publicly-accessible full text available March 27, 2024
  4. The open radio access network (O-RAN) describes an industry-driven open architecture and interfaces for building next generation RANs with artificial intelligence (AI) controllers. We circulated a survey among researchers, developers, and practitioners to gather their perspectives on O-RAN as a framework for 6G wireless research and development (R&D). The majority responded in favor of O-RAN and identified R&D of interest to them. Motivated by these responses, this paper identifies the limitations of the current O-RAN specifications and the technologies for overcoming them. We recognize end-to-end security, deterministic latency, physical layer real-time control, and testing of AI-based RAN control applications as the critical features to enable and discuss R&D opportunities for extending the architectural capabilities of O-RAN as a platform for 6G wireless. 
    more » « less
  5. null (Ed.)
  6. As several new spectrum bands are opening up for shared use, a new paradigm of Diverse Band-aware Dynamic Spectrum Access (d-DSA) has emerged. d-DSA equips a secondary device with software defined radios (SDRs) and utilize whitespaces (or idle channels) in multiple bands, including but not limited to TV, LTE, Citizen Broadband Radio Service (CBRS), unlicensed ISM. In this paper, we propose a decentralized, online multi-agent reinforcement learning based cross-layer BAnd selection and Routing Design (BARD) for such d-DSA networks. BARD not only harnesses whitespaces in multiple spectrum bands, but also accounts for unique electro-magnetic characteristics of those bands to maximize the desired quality of service (QoS) requirements of heterogeneous message packets; while also ensuring no harmful interference to the primary users in the utilized band. Our extensive experiments demonstrate that BARD outperforms the baseline dDSAaR algorithm in terms of message delivery ratio, however, at a relatively higher network latency, for varying number of primary and secondary users. Furthermore, BARD greatly outperforms its single-band DSA variants in terms of both the metrics in all considered scenarios. 
    more » « less
  7. A major challenge in mobile crowdsensing applications is the generation of false (or spam) contributions resulting from selfish and malicious behaviors of users, or wrong perception of an event. Such false contributions induce loss of revenue owing to undue incentivization, and also affect the operational reliability of the applications. To counter these problems, we propose an event-trust and user-reputation model, called QnQ, to segregate different user classes such as honest, selfish, or malicious. The resultant user reputation scores, are based on both `quality' (accuracy of contribution) and `quantity' (degree of participation) of their contributions. Specifically, QnQ exploits a rating feedback mechanism for evaluating an event-specific expected truthfulness, which is then transformed into a robust quality of information (QoI) metric to weaken various effects of selfish and malicious user behaviors. Eventually, the QoIs of various events in which a user has participated are aggregated to compute his reputation score, which in turn is used to judiciously disburse user incentives with a goal to reduce the incentive losses of the CS application provider. Subsequently, inspired by cumulative prospect theory (CPT), we propose a risk tolerance and reputation aware trustworthy decision making scheme to determine whether an event should be published or not, thus improving the operational reliability of the application. To evaluate QnQ experimentally, we consider a vehicular crowdsensing application as a proof-of-concept. We compare QoI performance achieved by our model with Jøsang's belief model, reputation scoring with Dempster-Shafer based reputation model, and operational (decision) accuracy with expected utility theory. Experimental results demonstrate that QnQ is able to better capture subtle differences in user behaviors based on both quality and quantity, reduces incentive losses, and significantly improves operational accuracy in presence of rogue contributions 
    more » « less