skip to main content


Search for: All records

Creators/Authors contains: "Shalaev, Vladimir M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We report on the generation of single-photon emitters in aluminum nitride films through Zr-ion implantation, which was predicted to form optically addressable spin defects. We studied implantation conditions, post-implantation procedures, and properties of resulting emitters.

     
    more » « less
    Free, publicly-accessible full text available January 1, 2024
  2. We report the first demonstration of single silicon vacancy center creation in 20 nm nanodiamonds using silicon ion implantation combined with thermal annealing. Room-temperature single photon emission with linewidth below 10 nm is observed.

     
    more » « less
    Free, publicly-accessible full text available January 1, 2024
  3. Abstract Diamond color centers have been widely studied in the field of quantum optics. The negatively charged silicon vacancy (SiV − ) center exhibits a narrow emission linewidth at the wavelength of 738 nm, a high Debye–Waller factor, and unique spin properties, making it a promising emitter for quantum information technologies, biological imaging, and sensing. In particular, nanodiamond (ND)-based SiV − centers can be heterogeneously integrated with plasmonic and photonic nanostructures and serve as in vivo biomarkers and intracellular thermometers. Out of all methods to produce NDs with SiV − centers, ion implantation offers the unique potential to create controllable numbers of color centers in preselected individual NDs. However, the formation of single color centers in NDs with this technique has not been realized. We report the creation of single SiV − centers featuring stable high-purity single-photon emission through Si implantation into NDs with an average size of ∼20 nm. We observe room temperature emission, with zero-phonon line wavelengths in the range of 730–800 nm and linewidths below 10 nm. Our results offer new opportunities for the controlled production of group-IV diamond color centers with applications in quantum photonics, sensing, and biomedicine. 
    more » « less
    Free, publicly-accessible full text available January 10, 2024
  4. Free, publicly-accessible full text available October 19, 2023
  5. We report a 250-fold photoluminescence enhancement of VB-spin-defects in hBN by coupling them to nanopatch antennas (NPA). Considering the relative size of the NPAs and laser-spot, an actual enhancement of 1695 times is determined.

     
    more » « less
    Free, publicly-accessible full text available January 1, 2024
  6. Free, publicly-accessible full text available January 11, 2024
  7. Abstract Solar-thermal technologies for converting chemicals using thermochemistry require extreme light concentration. Exploiting plasmonic nanostructures can dramatically increase the reaction rates by providing more efficient solar-to-heat conversion by broadband light absorption. Moreover, hot-carrier and local field enhancement effects can alter the reaction pathways. Such discoveries have boosted the field of photothermal catalysis, which aims at driving industrially-relevant chemical reactions using solar illumination rather than conventional heat sources. Nevertheless, only large arrays of plasmonic nano-units on a substrate, i.e., plasmonic metasurfaces, allow a quasi-unitary and broadband solar light absorption within a limited thickness (hundreds of nanometers) for practical applications. Through moderate light concentration (∼10 Suns), metasurfaces reach the same temperatures as conventional thermochemical reactors, or plasmonic nanoparticle bed reactors reach under ∼100 Suns. Plasmonic metasurfaces, however, have been mostly neglected so far for applications in the field of photothermal catalysis. In this Perspective, we discuss the potentialities of plasmonic metasurfaces in this emerging area of research. We present numerical simulations and experimental case studies illustrating how broadband absorption can be achieved within a limited thickness of these nanostructured materials. The approach highlights the synergy among different enhancement effects related to the ordered array of plasmonic units and the efficient heat transfer promoting faster dynamics than thicker structures (such as powdered catalysts). We foresee that plasmonic metasurfaces can play an important role in developing modular-like structures for the conversion of chemical feedstock into fuels without requiring extreme light concentrations. Customized metasurface-based systems could lead to small-scale and low-cost decentralized reactors instead of large-scale, infrastructure-intensive power plants. 
    more » « less
  8. The generation of nonequilibrium hot-carriers from the decay of surface plasmons has been attracting intense research attention in the last decade due to both the fundamental aspects of extreme light-matter interactions and potential practical applications. Here, we overview the physics associated with plasmon-assisted hot-carrier generation and outline the key applications of hot-carrier processes for photodetection, photovoltaics and photocatalysis. We also discuss the recent developments in employing molecular tunnel junctions as barriers for extracting hot-carriers and provide an outlook on the potential of this emerging field for sustainable energy.

     
    more » « less
  9. We report on the generation of single-photon emitters in silicon nitride. We demonstrate monolithic integration of these quantum emitters with silicon nitride waveguides showing a room-temperature off-chip count-rate of ~104counts/s and clear antibunching behavior.

     
    more » « less