- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Boltasseva, Alexandra (1)
-
Brongersma, Mark L. (1)
-
Bruno, Vincenzo (1)
-
Caspani, Lucia (1)
-
Clerici, Matteo (1)
-
DeVault, Clayton (1)
-
Faccio, Daniele (1)
-
Ferrera, Marcello (1)
-
Khurgin, Jacob_B (1)
-
Kim, Jongbum (1)
-
Kinsey, Nathaniel (1)
-
Shalaev, Vladimir M. (1)
-
Shalaev, Vladimir_M (1)
-
Shaltout, Amr (1)
-
Shaltout, Amr M. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Optical metasurfaces have provided us with extraordinary ways to control light by spatially structuring materials. The space-time duality in Maxwell’s equations suggests that additional structuring of metasurfaces in the time domain can even further expand their impact on the field of optics. Advances toward this goal critically rely on the development of new materials and nanostructures that exhibit very large and fast changes in their optical properties in response to external stimuli. New physics is also emerging as ultrafast tuning of metasurfaces is becoming possible, including wavelength shifts that emulate the Doppler effect, Lorentz nonreciprocity, time-reversed optical behavior, and negative refraction. The large-scale manufacturing of dynamic flat optics has the potential to revolutionize many emerging technologies that require active wavefront shaping with lightweight, compact, and power-efficient components.more » « less
-
Khurgin, Jacob_B; Clerici, Matteo; Bruno, Vincenzo; Caspani, Lucia; DeVault, Clayton; Kim, Jongbum; Shaltout, Amr; Boltasseva, Alexandra; Shalaev, Vladimir_M; Ferrera, Marcello; et al (, Optica)The conversion of a photon’s frequency has long been a key application area of nonlinear optics. It has been discussed how a slow temporal variation of a material’s refractive index can lead to the adiabatic frequency shift (AFS) of a pulse spectrum. Such a rigid spectral change has relevant technological implications, for example, in ultrafast signal processing. Here, we investigate the AFS process in epsilon-near-zero (ENZ) materials and show that the frequency shift can be achieved in a shorter length if operating in the vicinity of . We also predict that, if the refractive index is induced by an intense optical pulse, the frequency shift is more efficient for a pump at the ENZ wavelength. Remarkably, we show that these effects are a consequence of the slow propagation speed of pulses at the ENZ wavelength. Our theoretical predictions are validated by experiments obtained for the AFS of optical pulses incident upon aluminum zinc oxide thin films at ENZ. Our results indicate that transparent metal oxides operating near the ENZ point are good candidates for future frequency conversion schemes.more » « less
An official website of the United States government
