- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
10
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Acharya, N. (1)
-
Aluie, H. (1)
-
Shang, J. K. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Ahmed, Khadija. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Attari, S. Z. (0)
-
& Ayala, O. (0)
-
& Babbitt, W. (0)
-
& Baek, Y. (0)
-
& Bahabry, Ahmed. (0)
-
& Bai, F. (0)
-
& Balasubramanian, R. (0)
-
& Barth-Cohen, L. (0)
-
& Bassett, L. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Higgins, A. (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
:Chaosong Huang, Gang Lu (0)
-
A. Beygelzimer (0)
-
A. E. Lischka, E.B. Dyer (0)
-
A. Ghate, K. Krishnaiyer (0)
-
A. Higgins (0)
-
A. I. Sacristán, J. C. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
A laser-driven shock propagating through an isolated particle embedded in a plastic (CH) target was studied using the radiation-hydrodynamic code FLASH. Preliminary simulations using IONMIX equations of state (EOS) showed significant differences in the shock Hugoniot of aluminum compared to experimental data in the low-pressure regime [ O(10) GPa], resulting in higher streamwise compression and deformation of an aluminum particle. Hence, a simple modification to the ideal gas EOS was developed and employed to describe the target materials and examine the particle dynamics. The evolution of the pressure field demonstrated a complex wave interaction, resulting in a highly unsteady particle drag which featured two drag minima due to shock focusing at the rear end of the particle and rarefaction stretching due to laser shut-off. Although ∼30% lateral expansion and ∼25% streamwise compression were observed, the aluminum particle maintained considerable integrity without significant distortion. Additional simulations examined the particle response for a range of particle densities, sizes, and acoustic impedances. The results revealed that lighter particles such as aluminum gained significant momentum, reaching up to ∼96% of the shocked CH's speed, compared to ∼29% for the heavier tungsten particles. Despite the differences seen in the early stage of shock interaction, particlesmore »Free, publicly-accessible full text available May 1, 2023