Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This dataset provides comprehensive measurements of nutrient concentrations and fluxes in foliage, fine roots, wood, litterfall, and throughfall in hardwood and conifer stands across temperate forest stands at three long-term ecological research sites in the northeastern United States: Cone Pond, NH, Hubbard Brook, NH, and Sleepers River, VT. These sites vary in bedrock composition, parent material, and soil chemistry, but share similar climatic characteristics. Tissue nutrient concentrations were determined in leaves, fine roots, wood, and branches using site- and tissue-specific methods, with additional quality control through certified standards and duplicate sampling. Nutrient fluxes via litterfall and throughfall were measured over multiple years. Nutrient fluxes in roots were estimated from minirhizotron-based turnover rates and fine root biomass. Annual nutrient accumulation and uptake were calculated by integrating biomass production and nutrient concentrations. This dataset supports cross-site comparisons of forest biogeochemistry and provides a basis for evaluating nutrient limitations, cycling processes, and ecosystem responses to environmental gradients in northeastern temperate forests.more » « less
-
In the northeastern United States, both hardwood and conifer forests have developed on sites with contrasting soils, allowing an examination of the effect of site and forest type on ecosystem nutrient cycling. We measured biomass production and nutrient fluxes in northern hardwood and conifer stands at three sites differing in soil fertility. We found that leaf, root, and wood concentrations of calcium (Ca), magnesium (Mg), and potassium reflected differences in soil base cation availability, while concentrations of nitrogen (N) and phosphorus (P) were more consistent across sites. Nutrient uptake was calculated as the sum of litterfall, net throughfall (throughfall minus precipitation), root turnover, and accumulation in perennial tissues (wood). We propose a novel metric of nutrient cycling, the nutrient retention fraction (NRF), defined as the proportion of annual nutrient uptake retained in biomass accretion. Because the NRF is unitless, it can be compared across nutrients; Ca and Mg had the highest NRF and P the lowest ( p = 0.05). Across sites and elements, NRFs were lower for conifers (5.0 ± 0.6%) than for hardwoods (7.2 ± 0.5%), associated with their lower productivity. Nutrient-use efficiency (biomass production divided by nutrient uptake) tended to be high where foliar concentrations indicated low availability of that nutrient. Nutrient retention of N and P was higher where availability of the other element was high, which could be a mechanism contributing to N and P co-limitation.more » « lessFree, publicly-accessible full text available January 12, 2027
-
The concurrent reduction in acid deposition and increase in precipitation impact stream solute dynamics in complex ways that make predictions of future water quality difficult. To understand how changes in acid deposition and precipitation have influenced dissolved organic carbon (DOC) and nitrogen (N) loading to streams, we investigated trends from 1991 to 2018 in stream concentrations (DOC, ~3,800 measurements), dissolved organic nitrogen (DON, ~1,160 measurements), and dissolved inorganic N (DIN, ~2,130 measurements) in a forested watershed in Vermont, USA. Our analysis included concentration-discharge (C-Q) relationships and Seasonal Mann-Kendall tests on long-term, flow-adjusted concentrations. To understand whether hydrologic flushing and changes in acid deposition influenced long-term patterns by liberating DOC and dissolved N from watershed soils, we measured their concentrations in the leachate of 108 topsoil cores of 5 cm diameter that we flushed with solutions simulating high and low acid deposition during four different seasons. Our results indicate that DOC and DON often co-varied in both the long-term stream dataset and the soil core experiment. Additionally, leachate from winter soil cores produced especially high concentrations of all three solutes. This seasonal signal was consistent with C-Q relation showing that organic materials (e.g., DOC and DON), which accumulate during winter, are flushed into streams during spring snowmelt. Acid deposition had opposite effects on DOC and DON compared to DIN in the soil core experiment. Low acid deposition solutions, which mimic present day precipitation, produced the highest DOC and DON leachate concentrations. Conversely, high acid deposition solutions generally produced the highest DIN leachate concentrations. These results are consistent with the increasing trend in stream DOC concentrations and generally decreasing trend in stream DIN we observed in the long-term data. These results suggest that the impact of acid deposition on the liberation of soil carbon (C) and N differed for DOC and DON vs. DIN, and these impacts were reflected in long-term stream chemistry patterns. As watersheds continue to recover from acid deposition, stream C:N ratios will likely continue to increase, with important consequences for stream metabolism and biogeochemical processes.more » « less
-
Free, publicly-accessible full text available February 1, 2026
-
Abstract Tree-derived dissolved organic matter (DOM) comprises a significant carbon flux within forested watersheds. Few studies have assessed the optical properties of tree-derived DOM. To increase understanding of the factors controlling tree-derived DOM quality, we measured DOM optical properties, dissolved organic carbon (DOC) and calcium concentrations in throughfall and stemflow for 17 individual rain events during summer and fall in a temperate deciduous forest in Vermont, United States. DOC and calcium fluxes in throughfall and stemflow were enriched on average 4 to 70 times incident fluxes in rain. A multiway model was developed using absorbance and fluorescence spectroscopy to further characterize DOM optical properties. Throughfall contained a higher percentage of protein-like DOM fluorescence than stemflow while stemflow was characterized by a higher percentage of humic-like DOM fluorescence. DOM absorbance spectral slopes in yellow birch (Betula alleghaniensis) stemflow were significantly higher than in sugar maple (Acer saccharum) stemflow. DOM optical metrics were not influenced by rainfall volume, but percent protein-like fluorescence increased in throughfall during autumn when leaves senesced. Given the potential influence of tree-derived DOM fluxes on receiving soils and downstream ecosystems, future modeling of DOM transport and soil biogeochemistry should represent the influence of differing DOM quality in throughfall and stemflow across tree species and seasons.more » « less
An official website of the United States government
