skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Shao, Yucai"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 23, 2024
  2. Abstract

    The incompatibility between the anode and the cathode chemistry limits the used of Mg as an anode. This issue may be addressed by separating the anolyte and the catholyte with a membrane that only allows for Mg2+transport. Mg‐MOF‐74 thin films were used as the separator for this purpose. It was shown to meet the needs of low‐resistance, selective Mg2+transport. The uniform MOF thin films supported on Au substrate with thicknesses down to ca. 202 nm showed an intrinsic resistance as low as 6.4 Ω cm2, with the normalized room‐temperature ionic conductivity of ca. 3.17×10−6 S cm−1. When synthesized directly onto a porous anodized aluminum oxide (AAO) support, the resulting films were used as a standalone membrane to permit stable, low‐overpotential Mg striping and plating for over 100 cycles at a current density of 0.05 mA cm−2. The film was effective in blocking solvent molecules and counterions from crossing over for extended period of time.

     
    more » « less
  3. Abstract

    The incompatibility between the anode and the cathode chemistry limits the used of Mg as an anode. This issue may be addressed by separating the anolyte and the catholyte with a membrane that only allows for Mg2+transport. Mg‐MOF‐74 thin films were used as the separator for this purpose. It was shown to meet the needs of low‐resistance, selective Mg2+transport. The uniform MOF thin films supported on Au substrate with thicknesses down to ca. 202 nm showed an intrinsic resistance as low as 6.4 Ω cm2, with the normalized room‐temperature ionic conductivity of ca. 3.17×10−6 S cm−1. When synthesized directly onto a porous anodized aluminum oxide (AAO) support, the resulting films were used as a standalone membrane to permit stable, low‐overpotential Mg striping and plating for over 100 cycles at a current density of 0.05 mA cm−2. The film was effective in blocking solvent molecules and counterions from crossing over for extended period of time.

     
    more » « less