skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Shapiro, Stuart L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT We assess whether gravity darkening, induced by a tidal interaction during a stellar fly-by, might be sufficient to explain the Great Dimming of Betelgeuse. Adopting several simple approximations, we calculate the tidal deformation and associated gravity darkening in a close tidal encounter, as well as the reduction in the radiation flux as seen by a distant observer. We show that, in principle, the duration and degree of the resulting stellar dimming can be used to estimate the minimum pericentre separation and mass of a fly-by object, which, even if it remains undetected otherwise, might be a black hole, neutron star, or white dwarf. Our estimates show that, while such fly-by events may occur in other astrophysical scenarios, where our analysis should be applicable, they likely are not large enough to explain the Great Dimming of Betelgeuse by themselves. 
    more » « less