- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0001100001000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Sharma, Megha (3)
-
Cui, Jiaming (2)
-
Kamarthi, Harshavardhan (2)
-
Kong, Lingkai (2)
-
Liu, Haoxin (2)
-
Prakash, B Aditya (2)
-
Sasanur, Aditya (2)
-
Wen, Qingsong (2)
-
Xu, Shangqing (2)
-
Zhang, Chao (2)
-
Zhao, Zhiyuan (2)
-
Heger, Alexander (1)
-
Price, Daniel_J (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Liu, Haoxin; Xu, Shangqing; Zhao, Zhiyuan; Kong, Lingkai; Kamarthi, Harshavardhan; Sasanur, Aditya; Sharma, Megha; Cui, Jiaming; Wen, Qingsong; Zhang, Chao; et al (, NeurIPS)
-
Sharma, Megha; Price, Daniel_J; Heger, Alexander (, Monthly Notices of the Royal Astronomical Society)ABSTRACT In our Galactic Centre, about $$10\,000$$ to $$100\,000$$ stars are estimated to have survived tidal disruption events, resulting in partially disrupted remnants. These events occur when a supermassive black hole (SMBH) tidally interacts with a star, but not enough to completely disrupt the star. We use the 1D stellar evolution code Kepler and the 3D smoothed particle hydrodynamics code Phantom to model the tidal disruption of 1, 3, and $$10\, \mathrm{M}_\odot$$ stars at zero-age main sequence (ZAMS), middle-age main sequence (MAMS), and terminal-age main sequence (TAMS). We map the disruption remnants into Kepler in order to understand their post-distribution evolution. We find distinct characteristics in the remnants, including increased radius, rapid core rotation, and differential rotation in the envelope. The remnants undergo composition mixing that affects their stellar evolution. Although the remnants formed by disruption of ZAMS models evolve similarly to unperturbed models of the same mass, for MAMS and TAMS stars, the remnants have higher luminosity and effective temperature. Potential observational signatures include peculiarities in nitrogen and carbon abundances, higher luminosity, rapid rotation, faster evolution, and unique tracks in the Hertzsprung–Russell diagram.more » « less
An official website of the United States government

Full Text Available