skip to main content


Search for: All records

Creators/Authors contains: "Sharma, Prateek"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The carbon footprint associated with large language models (LLMs) is a significant concern, encompassing emissions from their training, inference, experimentation, and storage processes, including operational and embodied carbon emissions. An essential aspect is accurately estimating the carbon impact of emerging LLMs even before their training, which heavily relies on GPU usage. Existing studies have reported the carbon footprint of LLM training, but only one tool, mlco2, can predict the carbon footprint of new neural networks prior to physical training. However, mlco2 has several serious limitations. It cannot extend its estimation to dense or mixture-of-experts (MoE) LLMs, disregards critical architectural parameters, focuses solely on GPUs, and cannot model embodied carbon footprints. Addressing these gaps, we introduce \textit{\carb}, an end-to-end carbon footprint projection model designed for both dense and MoE LLMs. Compared to mlco2, \carb~significantly enhances the accuracy of carbon footprint estimations for various LLMs. The source code is released at \url{https://github.com/SotaroKaneda/MLCarbon}. 
    more » « less
    Free, publicly-accessible full text available April 1, 2025
  2. ABSTRACT

    Gas in the central regions of cool-core clusters and other massive haloes has a short cooling time (≲1 Gyr). Theoretical models predict that this gas is susceptible to multiphase condensation, in which cold gas is expected to condense out of the hot phase if the ratio of the thermal instability growth time-scale (tti) to the free-fall time (tff) is tti/tff ≲ 10. The turbulent mixing time tmix is another important time-scale: if tmix is short enough, the fluctuations are mixed before they can cool. In this study, we perform high-resolution (5122 × 768–10242 × 1536 resolution elements) hydrodynamic simulations of turbulence in a stratified medium, including radiative cooling of the gas. We explore the parameter space of tti/tff and tti/tmix relevant to galaxy and cluster haloes. We also study the effect of the steepness of the entropy profile, the strength of turbulent forcing and the nature of turbulent forcing (natural mixture versus compressive modes) on multiphase gas condensation. We find that larger values of tti/tff or tti/tmix generally imply stability against multiphase gas condensation, whereas larger density fluctuations (e.g. due to compressible turbulence) promote multiphase gas condensation. We propose a new criterion min (tti/min (tmix, tff)) ≲ c2 × exp (c1σs) for when the halo becomes multiphase, where σs denotes the amplitude of logarithmic density fluctuations and c1 ≃ 6, c2 ≃ 1.8 from an empirical fit to our results.

     
    more » « less
  3. Free, publicly-accessible full text available June 1, 2024
  4. Free, publicly-accessible full text available June 1, 2024
  5. Free, publicly-accessible full text available July 1, 2024
  6. ABSTRACT

    Using high-resolution Romulus simulations, we explore the origin and evolution of the circumgalactic medium (CGM) in the region 0.1 ≤ R/R500 ≤ 1 around massive central galaxies in group-scale halos. We find that the CGM is multiphase and highly dynamic. Investigating the dynamics, we identify seven patterns of evolution. We show that these are robust and detected consistently across various conditions. The gas cools via two pathways: (1) filamentary cooling inflows and (2) condensations forming from rapidly cooling density perturbations. In our cosmological simulations, the perturbations are mainly seeded by orbiting substructures. The condensations can form even when the median tcool/tff of the X-ray emitting gas is above 10 or 20. Strong amplitude perturbations can provoke runaway cooling regardless of the state of the background gas. We also find perturbations whose local tcool/tff ratios drop below the threshold but which do not condense. Rather, the ratios fall to some minimum value and then bounce. These are weak perturbations that are temporarily swept up in satellite wakes and carried to larger radii. Their tcool/tff ratios decrease because tff is increasing, not because tcool is decreasing. For structures forming hierarchically, our study highlights the challenge of using a simple threshold argument to infer the CGM’s evolution. It also highlights that the median hot gas properties are suboptimal determinants of the CGM’s state and dynamics. Realistic CGM models must incorporate the impact of mergers and orbiting satellites, along with the CGM’s heating and cooling cycles.

     
    more » « less
  7. ABSTRACT

    Cold, non-self-gravitating clumps occur in various astrophysical systems, ranging from the interstellar and circumgalactic medium (CGM), to active galactic nucleus outflows and solar coronal loops. Cold gas has diverse origins such as turbulent mixing or precipitation from hotter phases. We obtain the analytical solution for a steady pressure-driven 1D cooling flow around cold, local overdensities, irrespective of their origin. Our solutions describe the slow and steady radiative cooling-driven gas inflow in the saturated regime of non-linear thermal instability in clouds, sheets, and filaments. Such a cooling flow develops when the gas around small clumps undergoes radiative cooling. These small-scale, cold ‘seeds’ are embedded in a large volume-filling hot CGM maintained by feedback. We use a simple two-fluid treatment to include magnetic fields as an additional polytropic fluid. To test the limits of applicability of these analytical solutions, we compare with the gas structure found in and around small-scale cold clouds in the CGM of massive haloes in the TNG50 cosmological magnetohydrodynamic simulation from the IllustrisTNG suite. Despite qualitative resemblance of the gas structure, we find deviations from steady-state profiles generated by our model. Complex geometries and turbulence all add complexity beyond our analytical solutions. We derive an exact relation between the mass cooling rate ($\dot{\rm M}_{\rm cool}$) and the radiative cooling rate ($\dot{\rm E}_{\rm cool}$) for a steady cooling flow. A comparison with the TNG50 clouds shows that this cooling flow relation only applies in a narrow temperature range around $\rm \sim 10^{4.5}$ K where the isobaric cooling time is the shortest. In general, turbulence and mixing, instead of radiative cooling, may dominate the transition of gas between different temperature phases.

     
    more » « less
  8. null (Ed.)