skip to main content

Search for: All records

Creators/Authors contains: "Shashurin, Alexey"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Nonintrusive measurements of plasma properties are essential to evaluate, and numerically simulate, the in-flight performance of electric propulsion systems. As a logical first step in the development of new diagnostic techniques, this work depicts the implementation of multiphoton ionization and coherent microwave scattering (MPI-CMS) in a gridded-ion accelerator operating on rare gases. Presented studies primarily comprise photoionization spectroscopy of ground and excited state-populations of both neutrals and ions—supplemented by optical emission spectroscopy and Langmuir probe derived plume properties. Results suggest the potential of MPI-CMS for non-intrusive measurements of species number densities.

    more » « less
  2. In this work, evolution of parameters of nanosecond repetitively pulsed (NRP) discharges in pin-to-pin configuration in air was studied during the transient stage of initial 20 discharge pulses. Gas and plasma parameters in the discharge gap were measured using coherent microwave scattering, optical emission spectroscopy, and laser Rayleigh scattering for NRP discharges at repetition frequencies of 1, 10, and 100 kHz. Memory effects (when perturbations induced by the previous discharge pulse would not decay fully until the subsequent pulse) were detected for the repetition frequencies of 10 and 100 kHz. For 10 kHz NRP discharge, the discharge parameters experienced significant change after the first pulse and continued to substantially fluctuate between subsequent pulses due to rapid evolution of gas density and temperature during the 100  μs inter-pulse time caused by intense redistribution of the flow field in the gap on that time scale. For 100 kHz NRP discharge, the discharge pulse parameters reached a new steady-state at about five pulses after initiation. This new steady-state was associated with well-reproducible parameters between the discharge pulses and substantial reduction in breakdown voltage, discharge pulse energy, and electron number density in comparison to the first discharge pulse. For repetition frequencies 1–100 kHz considered in this work, the memory effects can be likely attributed to the reduction in gas number density and increase in the gas temperature that cannot fully recover to ambient conditions before subsequent discharge pulses. 
    more » « less
  3. Abstract

    The total number of electrons in a classical microplasma can be non-intrusively measured through elastic in-phase coherent microwave scattering (CMS). Here, we establish a theoretical basis for the CMS diagnostic technique with an emphasis on Thomson and collisional scattering in short, thin unmagnetized plasma media. Experimental validation of the diagnostic is subsequently performed via linearly polarized, variable frequency (10.5–12 GHz) microwave scattering off laser induced 1–760 Torr air-based microplasmas (287.5 nm O2resonant photoionization by ~ 5 ns, < 3 mJ pulses) with diverse ionization and collisional features. Namely, conducted studies include a verification of short-dipole-like radiation behavior, plasma volume imaging via ICCD photography, and measurements of relative phases, total scattering cross-sections, and total number of electrons$$N_{e}$$Nein the generated plasma filaments following absolute calibration using a dielectric scattering sample. Findings of the paper suggest an ideality of CMS in the Thomson “free-electron” regime—where a detailed knowledge of plasma and collisional properties (which are often difficult to accurately characterize due to the potential influence of inhomogeneities, local temperatures and densities, present species, and so on) is unnecessary to extract$$N_{e}$$Nefrom the scattered signal. The Thomson scattering regime of microwaves is further experimentally verified via measurements of the relative phase between the incident electric field and electron displacement.

    more » « less
    more » « less