skip to main content


Search for: All records

Creators/Authors contains: "Shastri, Bhavin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 15, 2025
  2. Broadband analog signal processors utilizing silicon photonics have demonstrated a significant impact in numerous application spaces, offering unprecedented bandwidths, dynamic range, and tunability. In the past decade, microwave photonic techniques have been applied to neuromorphic processing, resulting in the development of novel photonic neural network architectures. Neuromorphic photonic systems can enable machine learning capabilities at extreme bandwidths and speeds. Herein, low‐quality factor microring resonators are implemented to demonstrate broadband optical weighting. In addition, silicon photonic neural network architectures are critically evaluated, simulated, and optimized from a radio‐frequency performance perspective. This analysis highlights the linear front‐end of the photonic neural network, the effects of linear and nonlinear loss within silicon waveguides, and the impact of electrical preamplification.

     
    more » « less
    Free, publicly-accessible full text available August 1, 2025
  3. Ferranti, Francesco ; Hedayati, Mehdi K ; Fratalocchi, Andrea (Ed.)
    Free, publicly-accessible full text available June 18, 2025
  4. For photonic neural networks, we propose a novel microring bank with carrier-effect and thermal dual-tunability, which can 1) combine modulating and weighting for saved space, 2) improve tuning efficiency, and 3) inherit WDM-enabled scalability.

     
    more » « less
    Free, publicly-accessible full text available January 1, 2025
  5. Abstract

    Radio-frequency interference is a growing concern as wireless technology advances, with potentially life-threatening consequences like interference between radar altimeters and 5 G cellular networks. Mobile transceivers mix signals with varying ratios over time, posing challenges for conventional digital signal processing (DSP) due to its high latency. These challenges will worsen as future wireless technologies adopt higher carrier frequencies and data rates. However, conventional DSPs, already on the brink of their clock frequency limit, are expected to offer only marginal speed advancements. This paper introduces a photonic processor to address dynamic interference through blind source separation (BSS). Our system-on-chip processor employs a fully integrated photonic signal pathway in the analogue domain, enabling rapid demixing of received mixtures and recovering the signal-of-interest in under 15 picoseconds. This reduction in latency surpasses electronic counterparts by more than three orders of magnitude. To complement the photonic processor, electronic peripherals based on field-programmable gate array (FPGA) assess the effectiveness of demixing and continuously update demixing weights at a rate of up to 305 Hz. This compact setup features precise dithering weight control, impedance-controlled circuit board and optical fibre packaging, suitable for handheld and mobile scenarios. We experimentally demonstrate the processor’s ability to suppress transmission errors and maintain signal-to-noise ratios in two scenarios, radar altimeters and mobile communications. This work pioneers the real-time adaptability of integrated silicon photonics, enabling online learning and weight adjustments, and showcasing practical operational applications for photonic processing.

     
    more » « less
  6. Abstract

    mmWave devices can broadcast multiple spatially-separated data streams simultaneously in order to increase data transfer rates. Data transfer can, however, be compromised by interference. Photonic blind interference cancellation systems offer a power-efficient means of mitigating interference, but previous demonstrations of such systems have been limited by high latencies and the need for regular calibration. Here, we demonstrate real-time photonic blind interference cancellation using an FPGA-photonic system executing a zero-calibration control algorithm. Our system offers a greater than 200-fold reduction in latency compared to previous work, enabling sub-second cancellation weight identification. We further investigate key trade-offs between system latency, power consumption, and success rate, and we validate sub-Nyquist sampling for blind interference cancellation. We estimate that photonic interference cancellation can reduce the power required for digitization and signal recovery by greater than 74 times compared to the digital electronic alternative.

     
    more » « less
  7. Abstract

    The expansion of telecommunications incurs increasingly severe crosstalk and interference, and a physical layer cognitive method, called blind source separation (BSS), can effectively address these issues. BSS requires minimal prior knowledge to recover signals from their mixtures, agnostic to the carrier frequency, signal format, and channel conditions. However, previous electronic implementations did not fulfil this versatility due to the inherently narrow bandwidth of radio-frequency (RF) components, the high energy consumption of digital signal processors (DSP), and their shared weaknesses of low scalability. Here, we report a photonic BSS approach that inherits the advantages of optical devices and fully fulfils its “blindness” aspect. Using a microring weight bank integrated on a photonic chip, we demonstrate energy-efficient, wavelength-division multiplexing (WDM) scalable BSS across 19.2 GHz processing bandwidth. Our system also has a high (9-bit) resolution for signal demixing thanks to a recently developed dithering control method, resulting in higher signal-to-interference ratios (SIR) even for ill-conditioned mixtures.

     
    more » « less
  8. Blind source separation (BSS) becomes popularly useful with the need for increased bandwidth utilization. However, the traditional radio-frequency (RF) electronics hardly offer the BSS the demanded frequency agility because of the inherent bandwidth limitation. The emerging integrated photonics, fortunately, can be an efficacious alternative. Here, we demonstrate a photonic BSS approach based on the microring (MRR) weightbank that achieves blind source separation of up to 13.8 GHz bandwidth. In addition, by implementing an improved MRR control method with an accuracy of up to 8.5 bits, the reduced errors give confidence in solving BSS problems with a large ill-condition number. 
    more » « less