skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shaw, Bryan F"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The heterodimerization of wild-type (WT) Cu, Zn superoxide dismutase-1 (SOD1) and mutant SOD1 might be a critical step in the pathogenesis of SOD1-linked amyotrophic lateral sclerosis (ALS). Post-translational modifications that accelerate SOD1 heterodimerization remain unidentified. Here, we used capillary electrophoresis to quantify the effect of cysteine-111 oxidation on the rate and free energy of ALS mutant/WT SOD1 heterodimerization. The oxidation of Cys111-β-SH to sulfinic and sulfonic acid (by hydrogen peroxide) increased rates of heterodimerization (with unoxidized protein) by ∼3-fold. Cysteine oxidation drove the equilibrium free energy of SOD1 heterodimerization by up to ΔΔG = −5.11 ± 0.36 kJ mol–1. Molecular dynamics simulations suggested that this enhanced heterodimerization, between oxidized homodimers and unoxidized homodimers, was promoted by electrostatic repulsion between the two “dueling” Cys111-SO2–/SO3–, which point toward one another in the homodimeric state. Together, these results suggest that oxidation of Cys-111 promotes subunit exchange between oxidized homodimers and unoxidized homodimers, regardless of whether they are mutant or WT dimers. 
    more » « less
  2. Abstract The electrostatic effects of protein crowding have not been systematically explored. Rather, protein crowding is generally studied with co‐solvents or crowders that are electrostatically neutral, with no methods to measure how the net charge ( Z ) of a crowder affects protein function. For example, can the activity of an enzyme be affected electrostatically by the net charge of its neighbor in crowded milieu? This paper reports a method for crowding proteins of different net charge to an enzyme via semi‐random chemical crosslinking. As a proof of concept, RNase A was crowded (at distances ≤ the Debye length) via crosslinking to different heme proteins with Z  = +8.50 ± 0.04, Z  = +6.39 ± 0.12, or Z  = −10.30 ± 1.32. Crosslinking did not disrupt the structure of proteins, according to amide H/D exchange, and did not inhibit RNase A activity. For RNase A, we found that the electrostatic environment of each crowded neighbor had significant effects on rates of RNA hydrolysis. Crowding with cationic cytochrome c led to increases in activity, while crowding with anionic “supercharged” cytochrome c or myoglobin diminished activity. Surprisingly, electrostatic crowding effects were amplified at high ionic strength ( I  = 0.201 M) and attenuated at low ionic strength ( I  = 0.011 M). This salt dependence might be caused by a unique set of electric double layers at the dimer interspace (maximum distance of 8 Å, which cannot accommodate four layers). This new method of crowding via crosslinking can be used to search for electrostatic effects in protein crowding. 
    more » « less
  3. People with blindness have limited access to the high-resolution graphical data and imagery of science. Here, a lithophane codex is reported. Its pages display tactile and optical readouts for universal visualization of data by persons with or without eyesight. Prototype codices illustrated microscopy of butterfly chitin—fromN-acetylglucosamine monomer to fibril, scale, and whole insect—and were given to high schoolers from the Texas School for the Blind and Visually Impaired. Lithophane graphics of Fischer-Spier esterification reactions and electron micrographs of biological cells were also 3D-printed, along with x-ray structures of proteins (as millimeter-scale 3D models). Students with blindness could visualize (describe, recall, distinguish) these systems—for the first time—at the same resolution as sighted peers (average accuracy = 88%). Tactile visualization occurred alongside laboratory training, synthesis, and mentoring by chemists with blindness, resulting in increased student interest and sense of belonging in science. 
    more » « less
  4. Blind and sighted persons can now share and visualize the same piece of data using tactile graphics that glow in ambient light. 
    more » « less
  5. null (Ed.)
    Handheld models help students visualize three-dimensional (3D) objects, especially students with blindness who use large 3D models to visualize imagery by hand. The mouth has finer tactile sensors than hand, which could improve visualization using microscopic models that are portable, inexpensive, and disposable. The mouth remains unused in tactile learning. Here, we created bite-size 3D models of protein molecules from “gummy bear” gelatin or nontoxic resin. Models were made as small as rice grain and could be coded with flavor and packaged like candy. Mouth, hands, and eyesight were tested at identifying specific structures. Students recognized structures by mouth at 85.59% accuracy, similar to recognition by eyesight using computer animation. Recall accuracy of structures was higher by mouth than hand for 40.91% of students, equal for 31.82%, and lower for 27.27%. The convenient use of entire packs of tiny, cheap, portable models can make 3D imagery more accessible to students. 
    more » « less
  6. The “red reflex test” is used to screen children for leukocoria (“white eye”) in a standard pediatric examination, but is ineffective at detecting many eye disorders. Leukocoria also presents in casual photographs. The clinical utility of screening photographs for leukocoria is unreported. Here, a free smartphone application (CRADLE: ComputeR-Assisted Detector of LEukocoria) was engineered to detect photographic leukocoria and is available for download under the name “White Eye Detector.” This study determined the sensitivity, specificity, and accuracy of CRADLE by retrospectively analyzing 52,982 longitudinal photographs of children, collected by parents before enrollment in this study. The cohort included 20 children with retinoblastoma, Coats’ disease, cataract, amblyopia, or hyperopia and 20 control children. For 80% of children with eye disorders, the application detected leukocoria in photographs taken before diagnosis by 1.3 years (95% confidence interval, 0.4 to 2.3 years). The CRADLE application allows parents to augment clinical leukocoria screening with photography. 
    more » « less
  7. Abstract Theory predicts that the net charge (Z) of a protein can be altered by the net charge of a neighboring protein as the two approach one another below the Debye length. This type of charge regulation suggests that a protein's charge and perhaps function might be affected by neighboring proteins without direct binding. Charge regulation during protein crowding has never been directly measured due to analytical challenges. Here, we show that lysine specific protein crosslinkers (NHS ester‐Staudinger pairs) can be used to mimic crowding by linking two non‐interacting proteins at a maximal distance of ~7.9 Å. The net charge of the regioisomeric dimers and preceding monomers can then be determined with lysine‐acyl “protein charge ladders” and capillary electrophoresis. As a proof of concept, we covalently linked myoglobin (Zmonomer = −0.43 ± 0.01) and α‐lactalbumin (Zmonomer = −4.63 ± 0.05). Amide hydrogen/deuterium exchange and circular dichroism spectroscopy demonstrated that crosslinking did not significantly alter the structure of either protein or result in direct binding (thus mimicking crowding). Ultimately, capillary electrophoretic analysis of the dimeric charge ladder detected a change in charge of ΔZ = −0.04 ± 0.09 upon crowding by this pair (Zdimer = −5.10 ± 0.07). These small values of ΔZare not necessarily general to protein crowding (qualitatively or quantitatively) but will vary per protein size, charge, and solvent conditions. 
    more » « less
  8. Abstract The degree by which metalloproteins partially regulate net charge (Z) upon electron transfer (ET) was recently measured for the first time using “protein charge ladders” of azurin, cytochrome c, and myoglobin [Angew. Chem. Int. Ed.2018,57(19), 5364–5368;Angew. Chem.2018,130, 5462–5466]. Here, we show that Cu, Zn superoxide dismutase (SOD1) is unique among proteins in its ability to resist changes in net charge upon single ET (e.g., ΔZET(SOD1)=0.05±0.08 per electron, compared to ΔZET(Cyt‐c)=1.19±0.02). This total regulation of net charge by SOD1 is attributed to the protonation of the bridging histidine upon copper reduction, yielding redox centers that are isoelectric at both copper oxidation states. Charge regulation by SOD1 would prevent long range coulombic perturbations to residue pKa’s upon ET at copper, allowing SOD1’s “electrostatic loop” to attract superoxide with equal affinity (at both redox states of copper) during diffusion‐limited reduction and oxidation of superoxide. 
    more » « less