skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shejuti, Zarin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. While machine learning models perform well on offline data, assessing their performance in real-world, resource-constrained environments-considering accuracy, prediction time, power consumption, and memory usage-is crucial for practical applications. This research implements a mobile-based Human Activity Recognition solution to classify three postures-sitting, standing, and walking-using smartphone sensors, specifically accelerometer, gyroscope, and magnetometer. Time-domain features extracted from these sensors were used, with Random Forest employed for feature selection. One traditional machine learning model, Logistic Regression, and one deep learning model, Convolutional Neural Network, were trained and deployed via an Android application for real-time evaluation. While the Convolutional Neural Network achieved higher accuracy and better memory efficiency, Logistic Regression demonstrated faster prediction times during real-time use. Both models showed reduced accuracy for standing and walking postures in real-world conditions, emphasizing the challenges of deploying machine learning models in dynamic environments. This study highlights the importance of evaluating machine learning models in real-world settings to ensure reliability and efficiency, particularly in resource-constrained environments. 
    more » « less
    Free, publicly-accessible full text available March 22, 2026