skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sheldon, Frederick H"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 1, 2025
  2. Abstract Understanding how biotic and abiotic interactions influence community assembly and composition is a fundamental goal in community ecology. Addressing this issue is particularly tractable along elevational gradients in tropical mountains that feature substantial abiotic gradients and rates of species turnover. We examined elevational patterns of avian community structure on 2 mountains in Malaysian Borneo to assess changes in the relative strength of biotic interactions and abiotic constraints. In particular, we used metrics based on (1) phylogenetic relatedness and (2) functional traits associated with both resource acquisition and tolerance of abiotic challenges to identify patterns and causes of elevational differences in community structure. High elevation communities were composed of more phylogenetically and functionally similar species than would be expected by chance. Resource acquisition traits, in particular, were clustered at high elevations, suggesting low resource and habitat diversity were important drivers of those communities. Traits typically associated with tolerance of cold temperatures and low atmospheric pressure showed no elevational patterns. All traits were neutral or overdispersed at low elevations suggesting an absence of strong abiotic filters or an increased influence of interspecific competition. However, relative bill size, which is important for thermoregulation, was larger in low elevation communities, suggesting abiotic factors were also influential there. Regardless of metric, clustered and neutral communities were more frequent than overdispersed communities overall, implying that interspecific competition among close relatives may not be a pervasive driver of elevational distribution and community structure of tropical birds. Overall, our analyses reveal that a diverse set of predominantly biotic factors underlie elevational variation in community structure on tropical mountains. 
    more » « less
  3. Abstract AimPhysiological tolerances and biotic interactions along habitat gradients are thought to influence species occurrence. Distributional differences caused by such forces are particularly noticeable on tropical mountains, where high species turnover along elevational gradients occurs over relatively short distances and elevational distributions of particular species can shift among mountains. Such shifts are interpreted as evidence of the importance of spatial variation in interspecific competition and habitat or climatic gradients. To assess the relative importance of competition and compression of habitat and climatic zones in setting range limits, we examined differences in elevational ranges of forest bird species among four Bornean mountains with distinct features. LocationBornean mountains Kinabalu, Mulu, Pueh and Topap Oso. TaxonRain forest bird communities along elevational gradients. MethodsWe surveyed the elevational ranges of rain forest birds on four mountains in Borneo to test which environmental variables—habitat zone compression or presence of likely competitors—best predicted differences in elevational ranges of species among mountains. For this purpose, we used two complementary tests: a comparison of elevational range limits between pairs of mountains, and linear mixed models with naïve occupancy as the response variable. ResultsWe found that lowland species occur higher in elevation on two small mountains compared to Mt. Mulu. This result is inconsistent with the expectation that distributions of habitats are elevationally compressed on small mountains, but is consistent with the hypothesis that a reduction in competition (likely diffuse) on short mountains, which largely lack montane specialist species, allows lowland species to occur higher in elevation. The relative influence of competition changes with elevation, and the correlation between lower range limits of montane species and the distribution of their competitors was weaker than in lowland species. Main conclusionsThese findings provide support for the importance of biotic interactions in setting elevational range limits of tropical bird species, although abiotic gradients explain the majority of distribution patterns. Thus, models predicting range shifts under climate change scenarios must include not only climatic variables, as is currently most common, but also information on potentially resulting changes in species interactions, especially for lowland species. 
    more » « less
  4. Avian diversification has been influenced by global climate change, plate tectonic movements, and mass extinction events. However, the impact of these factors on the diversification of the hyperdiverse perching birds (passerines) is unclear because family level relationships are unresolved and the timing of splitting events among lineages is uncertain. We analyzed DNA data from 4,060 nuclear loci and 137 passerine families using concatenation and coalescent approaches to infer a comprehensive phylogenetic hypothesis that clarifies relationships among all passerine families. Then, we calibrated this phylogeny using 13 fossils to examine the effects of different events in Earth history on the timing and rate of passerine diversification. Our analyses reconcile passerine diversification with the fossil and geological records; suggest that passerines originated on the Australian landmass ∼47 Ma; and show that subsequent dispersal and diversification of passerines was affected by a number of climatological and geological events, such as Oligocene glaciation and inundation of the New Zealand landmass. Although passerine diversification rates fluctuated throughout the Cenozoic, we find no link between the rate of passerine diversification and Cenozoic global temperature, and our analyses show that the increases in passerine diversification rate we observe are disconnected from the colonization of new continents. Taken together, these results suggest more complex mechanisms than temperature change or ecological opportunity have controlled macroscale patterns of passerine speciation. 
    more » « less
  5. null (Ed.)
  6. The tropics are the source of most biodiversity yet inadequate sampling obscures answers to fundamental questions about how this diversity evolves. We leveraged samples assembled over decades of fieldwork to study diversification of the largest tropical bird radiation, the suboscine passerines. Our phylogeny, estimated using data from 2389 genomic regions in 1940 individuals of 1283 species, reveals that peak suboscine species diversity in the Neotropics is not associated with high recent speciation rates but rather with the gradual accumulation of species over time. Paradoxically, the highest speciation rates are in lineages from regions with low species diversity, which are generally cold, dry, unstable environments. Our results reveal a model in which species are forming faster in environmental extremes but have accumulated in moderate environments to form tropical biodiversity hotspots. 
    more » « less