skip to main content

Search for: All records

Creators/Authors contains: "Shen, F."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Friction-generated heat and the subsequent thermal evolution control fault material properties and thus strength during the earthquake cycle. We document evidence for transient, nanoscale fault rheology on a high-gloss, light-reflective hematite fault mirror (FM). The FM cuts specularite with minor quartz from the Pleistocene El Laco Fe-ore deposit, northern Chile. Scanning and transmission electron microscopy data reveal that the FM volume comprises a <50-μm-thick zone of polygonal hematite nanocrystals with spherical silica inclusions, rhombohedral twins, no shape or crystallographic preferred orientation, decreasing grain size away from the FM surface, and FM surface magnetite nanoparticles and Fe2+ suboxides. Sub–5-nm-thick silica films encase hematite grains and connect to amorphous interstitial silica. Observations imply that coseismic shear heating (temperature >1000 °C) generated transiently amorphous, intermixed but immiscible, and rheologically weak Fe-oxide and silica. Hematite regrowth in a fault-perpendicular thermal gradient, sintering, twinning, and a topographic network of nanometer-scale ridges from crystals interlocking across the FM surface collectively restrengthened fault material. Results reveal how temperature-induced weakening preconditions fault healing. Nanoscale transformations may promote subsequent strain delocalization and development of off-fault damage.