skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sheng, Jun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available September 1, 2025
  2. Soft robots, inspired by biological adaptability, can excel where rigid robots may falter and offer flexibility and safety for complex, unpredictable environments. In this paper, we present the Omnidirectional Bending Actuator (OBA), a soft robotic actuation module which is fabricated from off-the-shelf materials with easy scalability and consists of three pneumatic chambers. Distinguished by its streamlined manufacturing process, the OBA is capable of bending in all directions with a high force-to-weight ratio, potentially addressing a notable research gap in knit fabric actuators with multi-degree-of-freedom capabilities. We will present the design and fabrication of the OBA, examine its motion and force capabilities, and demonstrate its capability for stiffness modulation and its ability to maintain set configurations under loads. The mass of the entire actuation module is 278 g, with a range of omnidirectional bending up to 90.80°, a maximum tolerable pressure of 862 kPa, and a bending payload (block force) of 10.99 N, resulting in a force-to-weight ratio of 39.53 N/kg. The OBA’s cost-effective and simple fabrication, compact and lightweight structure, and capability to withstand high pressures present it as an attractive actuation primitive for applications demanding efficient and versatile soft robotic solutions. 
    more » « less
  3. Abstract Understanding how material accretes onto the rotationally supported disk from the surrounding envelope of gas and dust in the youngest protostellar systems is important for describing how disks are formed. Magnetohydrodynamic simulations of magnetized, turbulent disk formation usually show spiral-like streams of material (accretion flows) connecting the envelope to the disk. However, accretion flows in these early stages of protostellar formation still remain poorly characterized, due to their low intensity, and possibly some extended structures are disregarded as being part of the outflow cavity. We use ALMA archival data of a young Class 0 protostar, Lupus 3-MMS, to uncover four extended accretion flow–like structures in C 18 O that follow the edges of the outflows. We make various types of position–velocity cuts to compare with the outflows and find the extended structures are not consistent with the outflow emission, but rather more consistent with a simple infall model. We then use a dendrogram algorithm to isolate five substructures in position–position–velocity space. Four out of the five substructures fit well (>95%) with our simple infall model, with specific angular momenta between 2.7–6.9 × 10 −4 km s −1 pc and mass-infall rates of 0.5–1.1 × 10 −6 M ⊙ yr −1 . Better characterization of the physical structure in the supposed “outflow cavities” is important to disentangle the true outflow cavities and accretion flows. 
    more » « less