skip to main content


Search for: All records

Creators/Authors contains: "Sherrell, Robert M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 1, 2024
  2. Cold-Water Corals (CWCs), and most marine calcifiers, are especially threatened by ocean acidification (OA) and the decrease in the carbonate saturation state of seawater. The vulnerability of these organisms, however, also involves other global stressors like warming, deoxygenation or changes in sea surface productivity and, hence, food supply via the downward transport of organic matter to the deep ocean. This study examined the response of the CWC Desmophyllum dianthus to low pH under different feeding regimes through a long-term incubation experiment. For this experiment, 152 polyps were incubated at pH 8.1, 7.8, 7.5 and 7.2 and two feeding regimes for 14 months. Mean calcification rates over the entire duration of the experiment ranged between −0.3 and 0.3 mg CaCO 3 g −1 d −1 . Polyps incubated at pH 7.2 were the most affected and 30% mortality was observed in this treatment. In addition, many of the surviving polyps at pH 7.2 showed negative calcification rates indicating that, in the long term, CWCs may have difficulty thriving in such aragonite undersaturated waters. The feeding regime had a significant effect on skeletal growth of corals, with high feeding frequency resulting in more positive and variable calcification rates. This was especially evident in corals reared at pH 7.5 (Ω A = 0.8) compared to the low frequency feeding treatment. Early life-stages, which are essential for the recruitment and maintenance of coral communities and their associated biodiversity, were revealed to be at highest risk. Overall, this study demonstrates the vulnerability of D. dianthus corals to low pH and low food availability. Future projected pH decreases and related changes in zooplankton communities may potentially compromise the viability of CWC populations. 
    more » « less
  3. Abstract

    Recent studies, including many from the GEOTRACES program, have expanded our knowledge of trace metals in the Arctic Ocean, an isolated ocean dominated by continental shelf and riverine inputs. Here, we report a unique, pan‐Arctic linear relationship between dissolved copper (Cu) and nickel (Ni) present north of 60°N that is absent in other oceans. The correlation is driven primarily by high Cu and Ni concentrations in the low salinity, river‐influenced surface Arctic and low, homogeneous concentrations in Arctic deep waters, opposing their typical global distributions. Rivers are a major source of both metals, which is most evident within the central Arctic's Transpolar Drift. Local decoupling of the linear Cu‐Ni relationship along the Chukchi Shelf and within the Canada Basin upper halocline reveals that Ni is additionally modified by biological cycling and shelf sediment processes, while Cu is mostly sourced from riverine inputs and influenced by mixing. This observation highlights differences in their chemistries: Cu is more prone to complexation with organic ligands, stabilizing its riverine source fluxes into the Arctic, while Ni is more labile and is dominated by biological processes. Within the Canadian Arctic Archipelago, an important source of Arctic water to the Atlantic Ocean, contributions of Cu and Ni from meteoric waters and the halocline are attenuated during transit to the Atlantic. Additionally, Cu and Ni in deep waters diminish with age due to isolation from surface sources, with higher concentrations in the younger Eastern Arctic basins and lower concentrations in the older Western Arctic basins.

     
    more » « less
  4. null (Ed.)
  5. Abstract

    This study provides new data on the properties of aerosol iron (Fe) over the Antarctic Peninsula, one of the fastest warming regions on Earth in recent decades. Atmospheric deposition delivers Fe, a limiting micronutrient, to the Southern Ocean, and aerosol particle size influences the air‐to‐sea deposition rate and fractional solubility of aerosol Fe. Size‐segregated aerosols were collected at Palmer Station on the West Antarctic Peninsula during austral summer 2016–2017. Results show single‐mode size distribution of aerosol Fe, peaking at 4.4 μm diameter. The average concentration of total aerosol Fe was 1.3 (±0.40) ng m−3(range 0.74–1.8 ng m−3). High concentrations of total aerosol Fe occurred in January, implying increased Fe source strength then. Total labile Fe varied between 0.019 and 0.095 ng m−3, and labile Fe (II) accounted for ~90% of the total labile Fe. The average fractional solubility for total Fe was 3.8% (±1.5%) (range 2.5–7.3%). Estimated dry deposition fluxes for the study period were 3.2 μg m−2 year−1for total labile Fe and 83 μg m−2 year−1for total Fe in aerosols. We speculate that local and regional dust sources in Antarctica contributed to the observed aerosol Fe in austral summer and that warming on the Antarctic Peninsula during the past half century may have increased the formation of dust sources in this region. The potential biogeochemical impact of atmospheric Fe input to the West Antarctic Peninsula shelf waters and adjacent pelagic surface waters of the Southern Ocean may need to be re‐evaluated.

     
    more » « less
  6. Abstract

    The surface waters of the Arctic Ocean include an important inventory of freshwater from rivers, sea ice melt, and glacial meltwaters. While some freshwaters are mixed directly into the surface ocean, cryospheric reservoirs, such as snow, sea ice, and melt ponds act as incubators for trace metals, as well as potential sources to the surface ocean upon melting. The availability and reactivity of these metals depends on their speciation, which may vary across each pool or undergo transformation upon mixing. We present here baseline measurements of colloidal (∼0.003–0.200 μm) iron (Fe), zinc (Zn), nickel (Ni), copper (Cu), cadmium (Cd), and manganese (Mn) in snow, sea ice, melt ponds, and the underlying seawater. We consider both the total concentration of colloidal metals ([cMe]) in each cryospheric reservoir and the contribution of cMe to the overall dissolved metal phase (%cMe). Notably, snow contained higher (cMe) as well as higher %cMe relative to seawater for metals such as Fe and Zn across most stations. Stations close to the North Pole had relatively high aerosol deposition, imparting high (cFe) and (cZn), as well as high %cFe, %cZn, %cMn, and %cCd (>80%). In contrast, surface seawater concentrations of Cd, Cu, Mn, and Ni were dominated by the soluble phase (<0.003 μm), suggesting little impact of cMe from the melting cryosphere, or rapid aggregation/disaggregation dynamics within surface waters leading to the loss of cMe. This has important implications for how trace metal biogeochemistry speciation and thus fluxes may change in a future ice‐free Arctic Ocean.

     
    more » « less
  7. null (Ed.)