Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to nonfederal websites. Their policies may differ from this site.

Telikepalli Kavitha ; Kurt Mehlhorn (Ed.)Over the last 50 years, there have been many data structures proposed to perform proximity search problems on metric data. Perhaps the simplest of these is the ball tree, which was independently discovered multiple times over the years. However, there is a lack of strong theoretical guarantees for standard ball trees, often leading to more complicated structures when guarantees are required. In this paper, we present the greedy tree, a simple ball tree construction for which we can prove strong theoretical guarantees for proximity search queries, matching the state of the art under reasonable assumptions. To our knowledge, this is the first ball tree construction providing such guarantees. Like a standard ball tree, it is a binary tree with the points stored in the leaves. Only a point, a radius, and an integer are stored for each node. The asymptotic running times of search algorithms in the greedy tree match those of more complicated structures regularly used in practice.more » « less

Chambers, Erin W. (Ed.)We illustrate the computation of a greedy permutation using finite Voronoi diagrams. We describe the neighbor graph, which is a sparse graph data structure that facilitates efficient point location to insert a new Voronoi cell. This data structure is not dependent on a Euclidean metric space. The greedy permutation is computed in O(n log Delta) time for lowdimensional data using this method.more » « less

Buchin, Kevin and (Ed.)Given a persistence diagram with n points, we give an algorithm that produces a sequence of n persistence diagrams converging in bottleneck distance to the input diagram, the ith of which has i distinct (weighted) points and is a 2approximation to the closest persistence diagram with that many distinct points. For each approximation, we precompute the optimal matching between the ith and the (i+1)st. Perhaps surprisingly, the entire sequence of diagrams as well as the sequence of matchings can be represented in O(n) space. The main approach is to use a variation of the greedy permutation of the persistence diagram to give good Hausdorff approximations and assign weights to these subsets. We give a new algorithm to efficiently compute this permutation, despite the high implicit dimension of points in a persistence diagram due to the effect of the diagonal. The sketches are also structured to permit fast (linear time) approximations to the Hausdorff distance between diagrams  a lower bound on the bottleneck distance. For approximating the bottleneck distance, sketches can also be used to compute a linearsize neighborhood graph directly, obviating the need for geometric data structures used in stateoftheart methods for bottleneck computation.more » « less