skip to main content


Search for: All records

Creators/Authors contains: "Shi, Dong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    Characterizing the structural properties of galaxies in high-redshift protoclusters is key to our understanding of the environmental effects on galaxy evolution in the early stages of galaxy and structure formation. In this study, we assess the structural properties of 85 and 87 Hα emission-line candidates (HAEs) in the densest regions of two massive protoclusters, BOSS1244 and BOSS1542, respectively, using the Hubble Space Telescope (HST) H-band imaging data. Our results show a true pair fraction of 22 ± 5 (33 ± 6) per cent in BOSS1244 (BOSS1542), which yields a merger rate of 0.41 ± 0.09 (0.52 ± 0.04) Gyr−1 for massive HAEs with log (M*/M⊙) ≥ 10.3. This rate is 1.8 (2.8) times higher than that of the general fields at the same epoch. Our sample of HAEs exhibits half-light radii and Sérsic indices that cover a broader range than field star-forming galaxies. Additionally, about 15 per cent of the HAEs are as compact as the most massive (log (M*/M⊙) ≳ 11) spheroid-dominated population. These results suggest that the high galaxy density and cold dynamical state (i.e. velocity dispersion of <400 km s−1) are key factors that drive galaxy mergers and promote structural evolution in the two protoclusters. Our findings also indicate that both the local environment (on group scales) and the global environment play essential roles in shaping galaxy morphologies in protoclusters. This is evident in the systematic differences observed in the structural properties of galaxies between BOSS1244 and BOSS1542.

     
    more » « less
  2. Abstract We report the first spatially resolved measurements of gas-phase metallicity radial gradients in star-forming galaxies in overdense environments at z ≳ 2. The spectroscopic data are acquired by the MAMMOTH-Grism survey, a Hubble Space Telescope (HST) cycle 28 medium program. This program is obtaining 45 orbits of WFC3/IR grism spectroscopy in the density peak regions of three massive galaxy protoclusters (BOSS 1244, BOSS 1542, and BOSS 1441) at z = 2–3. Our sample in the BOSS 1244 field consists of 20 galaxies with stellar mass ranging from 10 9.0 to 10 10.3 M ⊙ , star formation rate (SFR) from 10 to 240 M ⊙ yr −1 , and global gas-phase metallicity ( 12 + log ( O / H ) ) from 8.2 to 8.6. At 1 σ confidence level, 2/20 galaxies in our sample show positive (inverted) gradients—the relative abundance of oxygen increasing with galactocentric radius, opposite the usual trend. Furthermore, 1/20 shows negative gradients, and 17/20 are consistent with flat gradients. This high fraction of flat/inverted gradients is uncommon in simulations and previous observations conducted in blank fields at similar redshifts. To understand this, we investigate the correlations among various observed properties of our sample galaxies. We find an anticorrelation between metallicity gradient and global metallicity of our galaxies residing in extreme overdensities, and a marked deficiency of metallicity in our massive galaxies as compared to their coeval field counterparts. We conclude that the cold-mode gas accretion plays an active role in shaping the chemical evolution of galaxies in the protocluster environments, diluting their central chemical abundance, and flattening/inverting their metallicity gradients. 
    more » « less
  3. null (Ed.)
  4. ABSTRACT Submillimetre galaxies represent a rapid growth phase of both star formation and massive galaxies. Mapping SMGs in galaxy protoclusters provides key insights into where and how these extreme starbursts take place in connections with the assembly of the large-scale structure in the early Universe. We search for SMGs at 850 $\rm{\mu m}$ using JCMT/SCUBA-2 in two massive protoclusters at z = 2.24, BOSS1244 and BOSS1542, and detect 43 and 54 sources with S850 > 4 mJy at the 4σ level within an effective area of 264 arcmin2, respectively. We construct the intrinsic number counts and find that the abundance of SMGs is 2.0 ± 0.3 and 2.1 ± 0.2 times that of the general fields, confirming that BOSS1244 and BOSS1542 contain a higher fraction of dusty galaxies with strongly enhanced star formation. The volume densities of the SMGs are estimated to be ∼15–30 times the average, significantly higher than the overdensity factor (∼6) traced by H α emission-line galaxies (HAEs). More importantly, we discover a prominent offset between the spatial distributions of the two populations in these two protoclusters – SMGs are mostly located around the high-density regions of HAEs, and few are seen inside these regions. This finding may have revealed for the first time the occurrence of violent star formation enhancement in the outskirts of the HAE density peaks, likely driven by the boosting of gas supplies and/or starburst triggering events. Meanwhile, the lack of SMGs inside the most overdense regions at z ∼ 2 implies a transition to the environment disfavouring extreme starbursts. 
    more » « less
  5. null (Ed.)
    ABSTRACT Massive galaxy overdensities at the peak epoch of cosmic star formation provide ideal testbeds for the formation theories of galaxies and large-scale structure. We report the confirmation of two massive galaxy overdensities at z = 2.24, BOSS1244 and BOSS1542, selected from the Mapping the Most Massive Overdensities Through Hydrogen (MAMMOTH) project using Lyα absorption from the intergalactic medium over the scales of 15−30 h−1 Mpc imprinted on the quasar spectra. We use Hα emitters (HAEs) as the density tracer and identify them using deep narrow-band H2S(1) and broad-band Ks imaging data obtained with the wide-field infrared camera (WIRCam) at the Canada–France–Hawaii Telescope. In total, 244 and 223 line emitters are detected in these two fields, and 196 ± 2 and 175 ± 2 are expected to be HAEs with an Hα flux of >2.5 × 10−17 erg s−1 cm−2 (corresponding to a star formation rate of >5 M⊙ yr−1). The detection rate of HAE candidates suggests an overdensity factor of δgal = 5.6 ± 0.3 and 4.9 ± 0.3 over the volume of 54 × 32 × 32 co-moving Mpc3. The overdensity factor increases two to three times when focusing on the high-density regions of scales 10–15  co-moving Mpc. Interestingly, the HAE density maps reveal that BOSS1244 contains a dominant structure, while BOSS1542 manifests as a giant filamentary structure. We measure the Hα luminosity functions (HLFs), finding that BOSS1244’s HLF is nearly identical to that of the general field at the same epoch, while BOSS1542 shows an excess of HAEs with high Hα luminosity, indicating the presence of enhanced star formation or active galactic nuclei activity. We conclude that the two massive MAMMOTH overdensities are undergoing a rapid galaxy mass assembly. 
    more » « less