skip to main content


Search for: All records

Creators/Authors contains: "Shi, Jing"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We have investigated the electrical transport properties of nanodevices fabricated from exfoliated flakes of two-dimensional metallic ferromagnets Fe3GeTe2 (FGT) and Fe5Ge2Te2 (FG2T) down to below three layers in thickness. The per-layer anomalous Hall conductivity even in thick FGT and FG2T devices is found to be much smaller than ∼e2h, the approximate value calculated for thick undoped crystals. Moreover, we obtain a power-law scaling relation between the per-layer anomalous Hall and per-layer longitudinal conductivities with an exponent close to 1.6, which agrees with the universal value for poor ferromagnetic conductors. Both FGT and FG2T devices show clear layer-dependent Curie temperatures and layer-dependent perpendicular magnetic anisotropy, with FG2T dominating the former and FGT dominating the latter for all thicknesses. Despite their declining trend as the device thickness decreases, both Curie temperature and magnetic anisotropy retain a significant fraction of their bulk values (>60% and >80% of the bulk values, respectively, even in the thinnest FG2T device), indicating attractive potential for practical applications.

     
    more » « less
    Free, publicly-accessible full text available May 6, 2025
  2. Abstract

    Emergent color centers with accessible spins hosted by van der Waals materials have attracted substantial interest in recent years due to their significant potential for implementing transformative quantum sensing technologies. Hexagonal boron nitride (hBN) is naturally relevant in this context due to its remarkable ease of integration into devices consisting of low-dimensional materials. Taking advantage of boron vacancy spin defects in hBN, we report nanoscale quantum imaging of low-dimensional ferromagnetism sustained in Fe3GeTe2/hBN van der Waals heterostructures. Exploiting spin relaxometry methods, we have further observed spatially varying magnetic fluctuations in the exfoliated Fe3GeTe2flake, whose magnitude reaches a peak value around the Curie temperature. Our results demonstrate the capability of spin defects in hBN of investigating local magnetic properties of layered materials in an accessible and precise way, which can be extended readily to a broad range of miniaturized van der Waals heterostructure systems.

     
    more » « less
  3. Abstract

    Van der Waals heterostructures offer great versatility to tailor unique interactions at the atomically flat interfaces between dissimilar layered materials and induce novel physical phenomena. By bringing monolayer 1 T’ WTe2, a two-dimensional quantum spin Hall insulator, and few-layer Cr2Ge2Te6, an insulating ferromagnet, into close proximity in an heterostructure, we introduce a ferromagnetic order in the former via the interfacial exchange interaction. The ferromagnetism in WTe2manifests in the anomalous Nernst effect, anomalous Hall effect as well as anisotropic magnetoresistance effect. Using local electrodes, we identify separate transport contributions from the metallic edge and insulating bulk. When driven by an AC current, the second harmonic voltage responses closely resemble the anomalous Nernst responses to AC temperature gradient generated by nonlocal heater, which appear as nonreciprocal signals with respect to the induced magnetization orientation. Our results from different electrodes reveal spin-polarized edge states in the magnetized quantum spin Hall insulator.

     
    more » « less