Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Blasiok et al. [2023] proposed distance to calibration as a natural measure of calibration error that unlike expected calibration error (ECE) is continuous. Recently, Qiao and Zheng [2024] gave a non-constructive argument establishing the existence of an online predictor that can obtain O(√T ) distance to calibration in the adversarial setting, which is known to be impossible for ECE. They leave as an open problem finding an explicit, efficient algorithm. We resolve this problem and give an extremely simple, efficient, deterministic algorithm that obtains distance to calibration error at most 2√T .more » « lessFree, publicly-accessible full text available January 1, 2026
-
A<sc>bstract</sc> Results are presented from a search for CP violation in top quark pair production, using proton-proton collisions at a center-of-mass energy of 13 TeV. The data used for this analysis consist of final states with two charged leptons collected by the CMS experiment, and correspond to an integrated luminosity of 35.9 fb−1. The search uses two observables,$$ \mathcal{O} $$ 1and$$ \mathcal{O} $$ 3, which are Lorentz scalars. The observable$$ \mathcal{O} $$ 1is constructed from the four-momenta of the charged leptons and the reconstructed top quarks, while$$ \mathcal{O} $$ 3consists of the four-momenta of the charged leptons and the b quarks originating from the top quarks. Asymmetries in these observables are sensitive to CP violation, and their measurement is used to determine the chromoelectric dipole moment of the top quark. The results are consistent with the expectation from the standard model.more » « less
-
Abstract Measurements of the associated production of a W boson and a charm ($${\text {c}}$$ ) quark in proton–proton collisions at a centre-of-mass energy of 8$$\,\text {TeV}$$ are reported. The analysis uses a data sample corresponding to a total integrated luminosity of 19.7$$\,\text {fb}^{-1}$$ collected by the CMS detector at the LHC. The W bosons are identified through their leptonic decays to an electron or a muon, and a neutrino. Charm quark jets are selected using distinctive signatures of charm hadron decays. The product of the cross section and branching fraction$$\sigma (\text {p}\text {p}\rightarrow \text {W}+ {\text {c}}+ \text {X}) {\mathcal {B}}(\text {W}\rightarrow \ell \upnu )$$ , where$$\ell = \text {e}$$ or$$\upmu $$ , and the cross section ratio$$\sigma (\text {p}\text {p}\rightarrow {{\text {W}}^{+} + \bar{{\text {c}}} + \text {X}}) / \sigma (\text {p}\text {p}\rightarrow {{\text {W}}^{-} + {\text {c}}+ \text {X}})$$ are measured in a fiducial volume and differentially as functions of the pseudorapidity and of the transverse momentum of the lepton from the W boson decay. The results are compared with theoretical predictions. The impact of these measurements on the determination of the strange quark distribution is assessed.more » « less
An official website of the United States government

Full Text Available