skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Shiao, William"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Tensor decompositions have proven to be effective in analyzing the structure of multidimensional data. However, most of these methods require a key parameter: the number of desired components. In the case of the CANDECOMP/PARAFAC decomposition (CPD), the ideal value for the number of components is known as the canonical rank and greatly affects the quality of the decomposition results. Existing methods use heuristics or Bayesian methods to estimate this value by repeatedly calculating the CPD, making them extremely computationally expensive. In this work, we proposeFRAPPE, the first method to estimate the canonical rank of a tensor without having to compute the CPD. This method is the result of two key ideas. First, it is much cheaper to generate synthetic data with known rank compared to computing the CPD. Second, we can greatly improve the generalization ability and speed of our model by generating synthetic data that matches a given input tensor in terms of size and sparsity. We can then train a specialized single-use regression model on a synthetic set of tensors engineered to match a given input tensor and use that to estimate the canonical rank of the tensor—all without computing the expensive CPD.FRAPPEis over$$24\times $$24×faster than the best-performing baseline, and exhibits a$$10\%$$10%improvement in MAPE on a synthetic dataset. It also performs as well as or better than the baselines on real-world datasets.

     
    more » « less
  2. Free, publicly-accessible full text available June 3, 2025
  3. Free, publicly-accessible full text available May 13, 2025
  4. Free, publicly-accessible full text available May 13, 2025
  5. Abstract

    In this work, we explore multiplex graph (networks with different types of edges) generation with deep generative models. We discuss some of the challenges associated with multiplex graph generation that make it a more difficult problem than traditional graph generation. We propose TenGAN, the first neural network for multiplex graph generation, which greatly reduces the number of parameters required for multiplex graph generation. We also propose 3 different criteria for evaluating the quality of generated graphs: a graph-attribute-based, a classifier-based, and a tensor-based method. We evaluate its performance on 4 datasets and show that it generally performs better than other existing statistical multiplex graph generative models. We also adapt HGEN, an existing deep generative model for heterogeneous information networks, to work for multiplex graphs and show that our method generally performs better.

     
    more » « less