skip to main content

Search for: All records

Creators/Authors contains: "Shiber, Sagiv"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.


    We present small-scale 3D hydrodynamical simulations of the evolution of a 0.3 M⊙ main-sequence (MS) star that launches two perpendicular jets within the envelope of a 0.88 M⊙ red giant (RG). Based on previous large-scale simulations, we study the dynamics of the jets either when the secondary star is grazing, when it has plunged-in, or when it is well within the envelope of the RG (in each stage for ∼11 d). The dynamics of the jets through the common envelope (CE) depend on the conditions of the environment as well as on their powering. In the grazing stage and the commencement of the plunge self-regulated jets need higher efficiencies to break out of the envelope of the RG. Deep inside the CE, on the time-scales simulated, jets are choked independently of whether they are self-regulated or constantly powered. Jets able to break out of the envelope of the RG in large-scale simulations, are choked in our small-scale simulations. The accreted angular momentum on to the secondary star is not large enough to form a disc. The mass accretion on to the MS star is 1–10 per cent of the Bondi–Hoyle–Littleton rate (∼10−3–10−1 M⊙ yr−1). High-luminosity emission, from X-rays to ultraviolet and optical, is expected ifmore »the jets break out of the CE. Our simulations illustrate the need for inclusion of more realistic accretion and jet models in the dynamical evolution of the CEs.

    « less
  2. Octo-Tiger is a code for modeling three-dimensional self-gravitating astrophysical fluids. It was particularly designed for the study of dynamical mass transfer between interacting binary stars. Octo-Tiger is parallelized for distributed systems using the asynchronous many-task runtime system, the C++ standard library for parallelism and concurrency (HPX) and utilizes CUDA for its gravity solver. Recently, we have remodeled Octo-Tiger’s hydro solver to use a three-dimensional reconstruction scheme. In addition, we have ported the hydro solver to GPU using CUDA kernels. We present scaling results for the new hydro kernels on ORNL’s Summit machine using a Sedov-Taylor blast wave problem. We also compare Octo-Tiger’s new hydro scheme with its old hydro scheme, using a rotating star as a test problem.
  3. ABSTRACT octo-tiger is an astrophysics code to simulate the evolution of self-gravitating and rotating systems of arbitrary geometry based on the fast multipole method, using adaptive mesh refinement. octo-tiger is currently optimized to simulate the merger of well-resolved stars that can be approximated by barotropic structures, such as white dwarfs (WDs) or main-sequence stars. The gravity solver conserves angular momentum to machine precision, thanks to a ‘correction’ algorithm. This code uses hpx parallelization, allowing the overlap of work and communication and leading to excellent scaling properties, allowing for the computation of large problems in reasonable wall-clock times. In this paper, we investigate the code performance and precision by running benchmarking tests. These include simple problems, such as the Sod shock tube, as well as sophisticated, full, WD binary simulations. Results are compared to analytical solutions, when known, and to other grid-based codes such as flash. We also compute the interaction between two WDs from the early mass transfer through to the merger and compare with past simulations of similar systems. We measure octo-tiger’s scaling properties up to a core count of ∼80 000, showing excellent performance for large problems. Finally, we outline the current and planned areas of development aimed at tacklingmore »a number of physical phenomena connected to observations of transients.« less