- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0000000004000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Shih, David (4)
-
Kasieczka, Gregor (3)
-
Nachman, Benjamin (3)
-
Butter, Anja (2)
-
Cranmer, Kyle (2)
-
Plehn, Tilman (2)
-
Badger, Simon (1)
-
Barman, Rahool Kumar (1)
-
Caron, Sascha (1)
-
Debnath, Dipsikha (1)
-
Di_Bello, Francesco Armando (1)
-
Dillon, Barry M. (1)
-
Dreyer, Etienne (1)
-
Dror, Jeff_A (1)
-
Fairbairn, Malcolm (1)
-
Faroughy, Darius A. (1)
-
Fedorko, Wojtek (1)
-
Forte, Stefano (1)
-
Freytsis, Marat (1)
-
Ganguly, Sanmay (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Karagiorgi, Georgia; Kasieczka, Gregor; Kravitz, Scott; Nachman, Benjamin; Shih, David (, Nature Reviews Physics)
-
Butter, Anja; Plehn, Tilman; Schumann, Steffen; Badger, Simon; Caron, Sascha; Cranmer, Kyle; Di_Bello, Francesco Armando; Dreyer, Etienne; Forte, Stefano; Ganguly, Sanmay; et al (, SciPost Physics)First-principle simulations are at the heart of the high-energy physics research program. They link the vast data output of multi-purpose detectors with fundamental theory predictions and interpretation. This review illustrates a wide range of applications of modern machine learning to event generation and simulation-based inference, including conceptional developments driven by the specific requirements of particle physics. New ideas and tools developed at the interface of particle physics and machine learning will improve the speed and precision of forward simulations, handle the complexity of collision data, and enhance inference as an inverse simulation problem.more » « less
-
Kasieczka, Gregor; Plehn, Tilman; Butter, Anja; Cranmer, Kyle; Debnath, Dipsikha; Dillon, Barry M.; Fairbairn, Malcolm; Faroughy, Darius A.; Fedorko, Wojtek; Gay, Christophe; et al (, SciPost Physics)Based on the established task of identifying boosted, hadronicallydecaying top quarks, we compare a wide range of modern machine learningapproaches. Unlike most established methods they rely on low-levelinput, for instance calorimeter output. While their networkarchitectures are vastly different, their performance is comparativelysimilar. In general, we find that these new approaches are extremelypowerful and great fun.more » « less
An official website of the United States government
