skip to main content


Search for: All records

Creators/Authors contains: "Shih, Mulaine"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We revisit the meaning of stacking fault energy (SFE) and the assumptions of equilibrium dissociation of lattice dislocations in concentrated alloys. SFE is a unique value in pure metals. However, in alloys beyond the dilute limit, SFE has a distribution of values depending on the local atomic environment. Conventionally, the equilibrium distance between partial dislocations is determined by a balance between the repulsive elastic interaction between the partial dislocations and a unique value for SFE. This assumption is used to determine SFE from experimental measurements of dislocation splitting distances in metals and alloys, often contradicting computational predictions. We use atomistic simulations in a model NiCo alloy to study the dislocation dissociation process in a range of compositions with positive, zero, and negative average SFE and surprisingly observe a stable, finite splitting distance in all cases at low temperatures. We then compute the decorrelation stress and examine the balance of forces on the partial dislocations, considering the local effects on SFE, and observe that even the upper bound of SFE distribution alone cannot satisfy the force balance in some cases. Furthermore, we show that in concentrated solid solutions, the resisting force caused by interaction of dislocations with the local solute environment becomes a major force acting on partial dislocations. Here, we show that the presence of a high solute/dislocation interaction, which is not easy to measure and neglected in experimental measurements of SFE, renders the experimental values of SFE unreliable.

     
    more » « less
  2. Cylindrical specimens of CrCoNi alloy with electropolished surfaces were subjected to constant total strain amplitude low cycle fatigue. The alloy exhibited an initial period of cyclic hardening followed by cyclic softening until failure occurred. At the end of hardening stage at the peak of cyclic stress, well-developed persistent slip markings (PSMs) consisting of extrusions and intrusions were associated with thin deformation twins. A sophisticated experimental workflow was designed to extract information from the surface and the bulk of tested material. A combination of SEM, EBSD, ECCI, FIB and HR-STEM was used to study the internal structure and the surface profiles around the deformation twins, which were produced during the initial period of cyclic loading. Furthermore, localized cyclic plastic strain and stress concentrations near deformation twins led not only to early, well-developed PSMs, but also to the activation of TWIP and TRIP plasticity even at low macroscopic stress amplitudes. 
    more » « less