skip to main content


Search for: All records

Creators/Authors contains: "Shimizu, N."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Borge, Maria (Ed.)
    Abstract

    Photonuclear reactions of light nuclei below a mass of$$A=60$$A=60are planned to be studied experimentally and theoretically with the PANDORA (Photo-Absorption of Nuclei and Decay Observation for Reactions in Astrophysics) project. Two experimental methods, virtual photon excitation by proton scattering and real photo absorption by a high-brilliance$$\gamma $$γ-ray beam produced by laser Compton scattering, will be applied to measure the photoabsorption cross sections and decay branching ratio of each decay channel as a function of the photon energy. Several nuclear models, e.g. anti-symmetrized molecular dynamics, mean-field and beyond-mean-field models, a large-scale shell model, and ab initio models, will be employed to predict the photonuclear reactions. The uncertainty in the model predictions will be evaluated based on the discrepancies between the model predictions and experimental data. The data and predictions will be implemented in the general reaction calculation code, . The results will be applied to the simulation of the photo-disintegration process of ultra-high-energy cosmic rays in inter-galactic propagation.

     
    more » « less
  2. Free, publicly-accessible full text available November 1, 2025
  3. Abstract

    The origin of high-energy galactic cosmic rays is yet to be understood, but some galactic cosmic-ray accelerators can accelerate cosmic rays up to PeV energies. The high-energy cosmic rays are expected to interact with the surrounding material or radiation, resulting in the production of gamma-rays and neutrinos. To optimize for the detection of such associated production of gamma-rays and neutrinos for a given source morphology and spectrum, a multimessenger analysis that combines gamma-rays and neutrinos is required. In this study, we use the Multi-Mission Maximum Likelihood framework with IceCube Maximum Likelihood Analysis software and HAWC Accelerated Likelihood to search for a correlation between 22 known gamma-ray sources from the third HAWC gamma-ray catalog and 14 yr of IceCube track-like data. No significant neutrino emission from the direction of the HAWC sources was found. We report the best-fit gamma-ray model and 90% CL neutrino flux limit from the 22 sources. From the neutrino flux limit, we conclude that, for five of the sources, the gamma-ray emission observed by HAWC cannot be produced purely from hadronic interactions. We report the limit for the fraction of gamma-rays produced by hadronic interactions for these five sources.

     
    more » « less
    Free, publicly-accessible full text available November 1, 2025