Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
GPU memory corruption and in particular double-bit errors (DBEs) remain one of the least understood aspects of HPC system reliability. Albeit rare, their occurrences always lead to job termination and can potentially cost thousands of node-hours, either from wasted com- putations or as the overhead from regular checkpointing needed to minimize the losses. As supercomputers and their components simultaneously grow in scale, density, failure rates, and environ- mental footprint, the eciency of HPC operations becomes both an imperative and a challenge. We examine DBEs using system telemetry data and logs col- lected from the Summit supercomputer, equipped with 27,648 Tesla V100 GPUs with 2nd-generation high-bandwidth memory (HBM2). Using exploratory data analysis and statistical learning, we extract several insights about memory reliability in such GPUs. We nd that GPUs with prior DBE occurrences are prone to experience them again due to otherwise harmless factors, correlate this phenomenon with GPU placement, and suggest manufacturing variability as a factor. On the general population of GPUs, we link DBEs to short- and long-term high power consumption modes while finding no signifcant correlation with higher temperatures. We also show that the workload type can be a factor in memory’s propensity to corruption.more » « less
-
Driving mechanisms of many biological functions in a cell include physical interactions of proteins. As protein-protein interactions (PPIs) are also important in disease development, protein-protein interactions are highlighted in the pharmaceutical industry as possible therapeutic targets in recent years. To understand the variety of protein-protein interactions in a proteome, it is essential to establish a method that can identify similarity and dissimilarity between protein-protein interactions for inferring the binding of similar molecules, including drugs and other proteins. In this study, we developed a novel method, protein-protein interaction-Surfer, which compares and quantifies similarity of local surface regions of protein-protein interactions. protein-protein interaction-Surfer represents a protein-protein interaction surface with overlapping surface patches, each of which is described with a three-dimensional Zernike descriptor (3DZD), a compact mathematical representation of 3D function. 3DZD captures both the 3D shape and physicochemical properties of the protein surface. The performance of protein-protein interaction-Surfer was benchmarked on datasets of protein-protein interactions, where we were able to show that protein-protein interaction-Surfer finds similar potential drug binding regions that do not share sequence and structure similarity. protein-protein interaction-Surfer is available at https://kiharalab.org/ppi-surfer .more » « less
An official website of the United States government
