- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Banerjee, Sudipto (3)
-
Shirota, Shinichiro (3)
-
Cook, Bruce_D (1)
-
Finley, Andrew_O (1)
-
Gelfand, Alan E. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract A key challenge in spatial data science is the analysis for massive spatially‐referenced data sets. Such analyses often proceed from Gaussian process specifications that can produce rich and robust inference, but involve dense covariance matrices that lack computationally exploitable structures. Recent developments in spatial statistics offer a variety of massively scalable approaches. Bayesian inference and hierarchical models, in particular, have gained popularity due to their richness and flexibility in accommodating spatial processes. Our current contribution is to provide computationally efficient exact algorithms for spatial interpolation of massive data sets using scalable spatial processes. We combine low‐rank Gaussian processes with efficient sparse approximations. Following recent work by Zhang et al. (2019), we model the low‐rank process using a Gaussian predictive process (GPP) and the residual process as a sparsity‐inducing nearest‐neighbor Gaussian process (NNGP). A key contribution here is to implement these models using exact conjugate Bayesian modeling to avoid expensive iterative algorithms. Through the simulation studies, we evaluate performance of the proposed approach and the robustness of our models, especially for long range prediction. We implement our approaches for remotely sensed light detection and ranging (LiDAR) data collected over the US Forest Service Tanana Inventory Unit (TIU) in a remote portion of Interior Alaska.more » « less
-
Shirota, Shinichiro; Gelfand, Alan E.; Banerjee, Sudipto (, Statistica Sinica)
-
Shirota, Shinichiro; Banerjee, Sudipto (, Journal of Time Series Analysis)The log‐Gaussian Cox process is a flexible and popular stochastic process for modeling point patterns exhibiting spatial and space‐time dependence. Model fitting requires approximation of stochastic integrals which is implemented through discretization over the domain of interest. With fine scale discretization, inference based on Markov chain Monte Carlo is computationally burdensome because of the cost of matrix decompositions and storage, such as the Cholesky, for high dimensional covariance matrices associated with latent Gaussian variables. This article addresses these computational bottlenecks by combining two recent developments: (i) a data augmentation strategy that has been proposed for space‐time Gaussian Cox processes that is based on exact Bayesian inference and does not require fine grid approximations for infinite dimensional integrals, and (ii) a recently developed family of sparsity‐inducing Gaussian processes, called nearest‐neighbor Gaussian processes, to avoid expensive matrix computations. Our inference is delivered within the fully model‐based Bayesian paradigm and does not sacrifice the richness of traditional log‐Gaussian Cox processes. We apply our method to crime event data in San Francisco and investigate the recovery of the intensity surface.more » « less