skip to main content

Search for: All records

Creators/Authors contains: "Shoemaker, William R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Dormancy is an adaptation to living in fluctuating environments. It allows individuals to enter a reversible state of reduced metabolic activity when challenged by unfavorable conditions. Dormancy can also influence species interactions by providing organisms with a refuge from predators and parasites. Here we test the hypothesis that, by generating a seed bank of protected individuals, dormancy can modify the patterns and processes of antagonistic coevolution. We conducted a factorially designed experiment where we passaged a bacterial host (Bacillus subtilis) and its phage (SPO1) in the presence versus absence of a seed bank consisting of dormant endospores. Owing in part to the inability of phages to attach to spores, seed banks stabilized population dynamics and resulted in minimum host densities that were 30-fold higher compared to bacteria that were unable to engage in dormancy. By supplying a refuge to phage-sensitive strains, we show that seed banks retained phenotypic diversity that was otherwise lost to selection. Dormancy also stored genetic diversity. After characterizing allelic variation with pooled population sequencing, we found that seed banks retained twice as many host genes with mutations, whether phages were present or not. Based on mutational trajectories over the course of the experiment, we demonstrate that seed banks can dampen bacteria-phage coevolution. Not only does dormancy create structure and memory that buffers populations against environmental fluctuations, it also modifies species interactions in ways that can feed back onto the eco-evolutionary dynamics of microbial communities.

    more » « less
  2. Imperiale, Michael J. (Ed.)
    ABSTRACT The degree to which independent populations subjected to identical environmental conditions evolve in similar ways is a fundamental question in evolution. To address this question, microbial populations are often experimentally passaged in a given environment and sequenced to examine the tendency for similar mutations to repeatedly arise. However, there remains the need to develop an appropriate statistical framework to identify genes that acquired more mutations in one environment than in another (i.e., divergent evolution), genes that serve as genetic candidates of adaptation. Here, we develop a mathematical model to evaluate evolutionary outcomes among replicate populations in the same environment (i.e., parallel evolution), which can then be used to identify genes that contribute to divergent evolution. Applying this approach to data sets from evolve-and-resequence experiments, we found that the distribution of mutation counts among genes can be predicted as an ensemble of independent Poisson random variables with zero free parameters. Building on this result, we propose that the degree of divergent evolution at a given gene between populations from two different environments can be modeled as the difference between two Poisson random variables, known as the Skellam distribution. We then propose and apply a statistical test to identify specific genes that contribute to divergent evolution. By focusing on predicting patterns among replicate populations in a given environment, we are able to identify an appropriate test for divergence between environments that is grounded in first principles. IMPORTANCE There is currently no universally accepted framework for identifying genes that contribute to molecular divergence between microbial populations in different environments. To address this absence, we developed a null model to describe the distribution of mutation counts among genes. We find that divergent evolution within a given gene can be modeled as the absolute difference in the total number of mutations observed between two environments. This quantity is effectively captured by a probability distribution known as the Skellam distribution, providing an appropriate statistical test for researchers seeking to identify the set of genes that contribute to divergent evolution in microbial evolution experiments. 
    more » « less
  3. Abstract

    Fluctuations in the availability of resources constrain the growth and reproduction of individuals, which subsequently affects the evolution of their respective populations. Many organisms contend with such fluctuations by entering a reversible state of reduced metabolic activity, a phenomenon known as dormancy. This pool of dormant individuals (i.e. a seed bank) does not reproduce and is expected to act as an evolutionary buffer, though it is difficult to observe this effect directly over an extended evolutionary timescale. Through genetic manipulation, we analyze the molecular evolutionary dynamics of Bacillus subtilis populations in the presence and absence of a seed bank over 700 days. The ability of these bacteria to enter a dormant state increased the accumulation of genetic diversity over time and altered the trajectory of mutations, findings that were recapitulated using simulations based on a mathematical model of evolutionary dynamics. While the ability to form a seed bank did not alter the degree of negative selection, we found that it consistently altered the direction of molecular evolution across genes. Together, these results show that the ability to form a seed bank can affect the direction and rate of molecular evolution over an extended evolutionary timescale.

    more » « less
  4. Battistuzzi, Fabia Ursula (Ed.)
    Abstract Microorganisms have the unique ability to survive extended periods of time in environments with extremely low levels of exploitable energy. To determine the extent that energy limitation affects microbial evolution, we examined the molecular evolutionary dynamics of a phylogenetically diverse set of taxa over the course of 1,000 days. We found that periodic exposure to energy limitation affected the rate of molecular evolution, the accumulation of genetic diversity, and the rate of extinction. We then determined the degree that energy limitation affected the spectrum of mutations as well as the direction of evolution at the gene level. Our results suggest that the initial depletion of energy altered the direction and rate of molecular evolution within each taxon, though after the initial depletion the rate and direction did not substantially change. However, this consistent pattern became diminished when comparisons were performed across phylogenetically distant taxa, suggesting that although the dynamics of molecular evolution under energy limitation are highly generalizable across the microbial tree of life, the targets of adaptation are specific to a given taxon. 
    more » « less
  5. Microorganisms commonly inhabit energy-limited ecosystems where cellular maintenance and reproduction is highly constrained. To gain insight into how individuals persist under such conditions, we derived demographic parameters from a collection of 21 heterotrophic bacterial taxa by censusing 100 populations in an effectively closed system for 1,000 d. All but one taxon survived prolonged resource scarcity, yielding estimated times to extinction ranging over four orders of magnitude from 10 0 to 10 5 y. Our findings corroborate reports of long-lived bacteria recovered from ancient environmental samples, while providing insight into mechanisms of persistence. As death rates declined over time, lifespan was extended through the scavenging of dead cells. Although reproduction was suppressed in the absence of exogenous resources, populations continued to evolve. Hundreds of mutations were acquired, contributing to genome-wide signatures of purifying selection as well as molecular signals of adaptation. Consistent ecological and evolutionary dynamics indicate that distantly related bacteria respond to energy limitation in a similar and predictable manner, which likely contributes to the stability and robustness of microbial life. 
    more » « less
  6. Abstract

    Variation in the structure of host-associated microbial communities has been correlated with the occurrence and severity of disease in diverse host taxa, suggesting a key role of the microbiome in pathogen defense. However, whether these correlations are typically a cause or consequence of pathogen exposure remains an open question, and requires experimental approaches to disentangle. In amphibians, infection by the fungal pathogen Batrachochytrium dendrobatidis (Bd) alters the skin microbial community in some host species, whereas in other species, the skin microbial community appears to mediate infection dynamics. In this study, we completed experimental Bd exposures in three species of tropical frogs (Agalychnis callidryas, Dendropsophus ebraccatus,andCraugastor fitzingeri) that were sympatric with Bd at the time of the study. For all three species, we identified key taxa within the skin bacterial communities that were linked to Bd infection dynamics. We also measured higher Bd infection intensities in D. ebraccatus and C. fitzingeri that were associated with higher mortality in C. fitzingeri. Our findings indicate that microbially mediated pathogen resistance is a complex trait that can vary within and across host species, and suggest that symbiont communities that have experienced prior selection for defensive microbes may be less likely to be disturbed by pathogen exposure.

    more » « less