- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Alikhani, M (1)
-
Bekris, K E (1)
-
Chaudhuri, S. (1)
-
Kavraki, L.E. (1)
-
Khalid, B (1)
-
Mitash, C (1)
-
Shome, R (1)
-
Shome, R. (1)
-
Sobti, S. (1)
-
Stone, M (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)We present a framework for planning complex motor actions such as pouring or scooping from arbitrary start states in cluttered real-world scenes. Traditional approaches to such tasks use dynamic motion primitives (DMPs) learned from human demonstrations. We enhance a recently proposed state of- the-art DMP technique capable of obstacle avoidance by including them within a novel hybrid framework. This complements DMPs with sampling-based motion planning algorithms, using the latter to explore the scene and reach promising regions from which a DMP can successfully complete the task. Experiments indicate that even obstacle-aware DMPs suffer in task success when used in scenarios which largely differ from the trained demonstration in terms of the start, goal, and obstacles. Our hybrid approach significantly outperforms obstacle-aware DMPs by successfully completing tasks in cluttered scenes for a pouring task in simulation. We further demonstrate our method on a real robot for pouring and scooping tasks.more » « less
-
Alikhani, M; Khalid, B; Shome, R; Mitash, C; Bekris, K E; Stone, M (, Proceedings of the AAAI Conference on Artificial Intelligence)Collaborative robotics requires effective communication between a robot and a human partner. This work proposes a set of interpretive principles for how a robotic arm can use pointing actions to communicate task information to people by extending existing models from the related literature. These principles are evaluated through studies where English-speaking human subjects view animations of simulated robots instructing pick-and-place tasks. The evaluation distinguishes two classes of pointing actions that arise in pick-and-place tasks: referential pointing (identifying objects) and locating pointing (identifying locations). The study indicates that human subjects show greater flexibility in interpreting the intent of referential pointing compared to locating pointing, which needs to be more deliberate. The results also demonstrate the effects of variation in the environment and task context on the interpretation of pointing. Our corpus, experiments and design principles advance models of context, common sense reasoning and communication in embodied communication.more » « less
An official website of the United States government

Full Text Available