skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Show, Veronica"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We demonstrate the epitaxial growth of the first two members, and the n=∞ member of the homologous Ruddlesden–Popper series of Ban+1InnO2.5n+1 of which the n=1 member was previously unknown. The films were grown by suboxide molecular-beam epitaxy where the indium is provided by a molecular beam of indium-suboxide [In2O (g)]. To facilitate ex situ characterization of the highly hygroscopic barium indate films, a capping layer of amorphous SiO2 was deposited prior to air exposure. The structural quality of the films was assessed by x-ray diffraction, reflective high-energy electron diffraction, and scanning transmission electron microscopy. 
    more » « less
  2. Abstract Transparent oxide thin film transistors (TFTs) are an important ingredient of transparent electronics. Their fabrication at the back‐end‐of‐line (BEOL) opens the door to novel strategies to more closely integrate logic with memory for data‐intensive computing architectures that overcome the scaling challenges of today's integrated circuits. A recently developed variant of molecular‐beam epitaxy (MBE) called suboxide MBE (S‐MBE) is demonstrated to be capable of growing epitaxial In2O3at BEOL temperatures with unmatched crystal quality. The fullwidth at halfmaximum of the rocking curve is 0.015° and, thus, ≈5x narrower than any reports at any temperature to date and limited by the substrate quality. The key to achieving these results is the provision of an In2O beam by S‐MBE, which enables growth in adsorption control and is kinetically favorable. To benchmark this deposition method for TFTs, rudimentary devices were fabricated. 
    more » « less