skip to main content


Search for: All records

Creators/Authors contains: "Shroyer, Emily L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract In low winds (≲2 m s −1 ), diurnal warm layers form but shear in the near-surface jet is too weak to generate shear instability and mixing. In high winds (≳8ms −1 ), surface heat is rapidly mixed downward and diurnal warm layers do not form. Under moderate winds of 3–5 m s −1 , the jet persists for several hours in a state that is susceptible to shear instability. We observe low Richardson numbers of Ri ≈ 0.1 in the top 2 m between 10:00 and 16:00 local time (from 4 h after sunrise to 2 h before sunset). Despite Ri being well below the Ri = 1/4 threshold, instabilities do not grow quickly, nor do they overturn. The stabilizing influence of the sea surface limits growth, a result demonstrated by both linear stability analysis and two-dimensional simulations initialized from observed profiles. In some cases, growth rates are sufficiently small (≪1 h −1 ) that mixing is not expected even though Ri < 1/4. This changes around 16:00–17:00. Thereafter, convective cooling causes the region of unstable flow to move downward, away from the surface. This allows shear instabilities to grow an order of magnitude faster and mix effectively. We corroborate the overall observed diurnal cycle of instability with a freely evolving, two-dimensional simulation that is initialized from rest before sunrise. 
    more » « less
  2. Abstract

    Freshwater lenses (FWLs) deposited by rain exhibit local anomalies in surface salinity and temperature. The resulting patchiness in near‐surface density and sea surface temperature influence upper ocean dynamics and air‐sea fluxes of heat. Understanding lens formation and evolution has been a focus of recent observational and modeling efforts. The work presented here integrates near‐surface ocean and atmosphere time series with remote sensing of sea surface disturbances (X‐band radar) to describe properties and kinematics of FWLs in the equatorial Indian Ocean. Twenty‐eight FWLs were observed with diverse temperature‐salinity properties and structure. Fresh salinity anomalies were as large as −1.35 psu at 3 m depth. Associated temperature anomalies ranged from −0.80 to +0.59°C. Ship‐based radar imagery allowed quantification of propagation speeds of 10 FWL fronts. In the reference frame of the moving fluid, the observed speeds are consistent with the linear long wave speed of. These results offer a novel perspective on the evolution of FWLs as gravity currents whose dynamics need to be properly accounted for to assess lens longevity, including persistence of salinity and temperature anomalies, as well as influences on air‐sea interaction.

     
    more » « less
  3. Abstract

    Multiyear turbulence measurements from oceanographic moorings in equatorial Atlantic and Pacific cold tongues reveal similarities in deep cycle turbulence (DCT) beneath the mixed layer (ML) and above the Equatorial Undercurrent (EUC) core. Diurnal composites of turbulence kinetic energy dissipation rate,ϵ, clearly show the diurnal cycles of turbulence beneath the ML in both cold tongues. Despite differences in surface forcing, EUC strength and core depth DCT occurs, and is consistent in amplitude and timing, at all three sites. Time‐mean values ofϵat 30 m depth are nearly identical at all three sites. Variations of averaged values ofϵin the deep cycle layer below 30 m range to a factor of 10 between sites. A proposed scaling in depth that isolates the deep cycle layers and ofϵby the product of wind stress and current shear collapses vertical profiles at all sites to within a factor of 2.

     
    more » « less