skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shrutika, FNU"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Effective human-AI collaboration requires agents to adopt their roles and levels of support based on human needs, task requirements, and complexity. Traditional human-AI teaming often relies on a pre-determined robot communication scheme, restricting teamwork adaptability in complex tasks. Leveraging the strong communication capabilities of Large Language Models (LLMs), we propose a Human-Robot Teaming Framework with Multi-Modal Language feedback (HRT-ML), a framework designed to enhance human-robot interaction by adjusting the frequency and content of language-based feedback. The HRT-ML framework includes two core modules: a Coordinator for high-level, low-frequency strategic guidance and a Manager for task-specific, high-frequency instructions, enabling passive and active interactions with human teammates. To assess the impact of language feedback in collaborative scenarios, we conducted experiments in an enhanced Overcooked-AI game environment with varying levels of task complexity (easy, medium, hard) and feedback frequency (inactive, passive, active, superactive). Our results show that as task complexity increases relative to human capabilities, human teammates exhibited stronger preferences toward robotic agents that can offer frequent, proactive support. However, when task complexities exceed the LLM's capacity, noisy and inaccurate feedback from superactive agents can instead hinder team performance, as it requires human teammates to increase their effort to interpret and respond to the large amount of communications, with limited performance return. Our results offer a general principle for robotic agents to dynamically adjust their levels and frequencies of communication to work seamlessly with humans and achieve improved teaming performance. 
    more » « less
    Free, publicly-accessible full text available November 26, 2025