skip to main content

Search for: All records

Creators/Authors contains: "Siegel, Daniel M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The core collapse of rapidly rotating massive ∼ 10Mstars (“collapsars”), and the resulting formation of hyperaccreting black holes, comprise a leading model for the central engines of long-duration gamma-ray bursts (GRBs) and promising sources ofr-process nucleosynthesis. Here, we explore the signatures of collapsars from progenitors with helium cores ≳ 130Mabove the pair-instability mass gap. While the rapid collapse to a black hole likely precludes prompt explosions in these systems, we demonstrate that disk outflows can generate a large quantity (up to ≳ 50M) of ejecta, comprised of ≳ 5–10Minr-process elements and ∼ 0.1–1Mof56Ni, expanding at velocities ∼0.1 c. Radioactive heating of the disk wind ejecta powers an optical/IR transient, with a characteristic luminosity ∼ 1042erg s−1and a spectral peak in the near-IR (due to the high optical/UV opacities of lanthanide elements), similar to kilonovae from neutron star mergers, but with longer durations ≳1 month. These “super-kilonovae” (superKNe) herald the birth of massive black holes ≳ 60M, which—as a result of disk wind mass loss—can populate the pair-instability mass gap “from above,” and could potentially create the binary components of GW190521. SuperKNe could be discovered via wide-field surveys, such as those planned with the Roman Space Telescope, or via late-timemore »IR follow-up observations of extremely energetic GRBs. Multiband gravitational waves of ∼ 0.1–50 Hz from nonaxisymmetric instabilities in self-gravitating massive collapsar disks are potentially detectable by proposed observatories out to hundreds of Mpc; in contrast to the “chirp” from binary mergers, the collapsar gravitational-wave signal decreases in frequency as the disk radius grows (“sad trombone”).

    « less
  2. ABSTRACT The core collapse of massive, rapidly-rotating stars are thought to be the progenitors of long-duration gamma-ray bursts (GRB) and their associated hyperenergetic supernovae (SNe). At early times after the collapse, relatively low angular momentum material from the infalling stellar envelope will circularize into an accretion disc located just outside the black hole horizon, resulting in high accretion rates necessary to power a GRB jet. Temperatures in the disc mid-plane at these small radii are sufficiently high to dissociate nuclei, while outflows from the disc can be neutron-rich and may synthesize r-process nuclei. However, at later times, and for high progenitor angular momentum, the outer layers of the stellar envelope can circularize at larger radii ≳ 107 cm, where nuclear reactions can take place in the disc mid-plane (e.g. 4He + 16O → 20Ne + γ). Here we explore the effects of nuclear burning on collapsar accretion discs and their outflows by means of hydrodynamical α-viscosity torus simulations coupled to a 19-isotope nuclear reaction network, which are designed to mimic the late infall epochs in collapsar evolution when the viscous time of the torus has become comparable to the envelope fall-back time. Our results address several key questions, such as the conditions for quiescent burningmore »and accretion versus detonation and the generation of 56Ni in disc outflows, which we show could contribute significantly to powering GRB SNe. Being located in the slowest, innermost layers of the ejecta, the latter could provide the radioactive heating source necessary to make the spectral signatures of r-process elements visible in late-time GRB-SNe spectra.« less