skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sierros, Konstantinos_A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Vapor printing technologies are emerging as powerful tools for device fabrication due to their unique solvent‐free nature. In recent years, a few articles have been published to investigate these printing technologies for applications such as organic light‐emitting diodes (OLEDs), circuits, sensors, photodetectors, and drug screening. These printing technologies are physical vapor printing methods based on ablation, evaporation, and condensation. In this perspective, the advancement of vapor printing technologies is highlighted and introduce an additional approach enabling the chemistry of molecular precursors to be fully exploited dynamically. These additional concepts of vapor printing are introduced from the perspective of the printer's design and the development of process strategies with supporting original data. Furthermore, potential applications, challenges, and outlook are discussed. Specifically, this outlook appeals to researchers involved in nanostructured materials, semiconductors, catalysts, alloys, metals, polymers, functionally gradient materials, multi‐material structures, and additive manufacturing (AM) from academia and industries alike. 
    more » « less