- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Sills, Ryan_B (2)
-
Bertin, Nicolas (1)
-
Bulatov, Vasily_V (1)
-
Cai, Wei (1)
-
Csányi, Gábor (1)
-
Ezzat, Ahmed_Aziz (1)
-
Fang, Yating (1)
-
Foiles, Stephen_M (1)
-
Geers, M_G_D (1)
-
González, Carlos (1)
-
Hütter, Markus (1)
-
Kim, Woo_Kyun (1)
-
Kochmann, Dennis_M (1)
-
LLorca, Javier (1)
-
Mattsson, Ann_E (1)
-
Rottler, Jörg (1)
-
Schultz, Peter_A (1)
-
Shluger, Alexander (1)
-
Steinbach, Ingo (1)
-
Strachan, Alejandro (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Coarse-grained models describe the macroscopic mean response of a process at large scales, which derives from stochastic processes at small scales. Common examples include accounting for velocity fluctuations in a turbulent fluid flow model and cloud evolution in climate models. Most existing techniques for constructing coarse-grained models feature ill-defined parameters whose values are arbitrarily chosen (e.g., a window size), are narrow in their applicability (e.g., only applicable to time series or spatial data), or cannot readily incorporate physics information. Here, we introduce the concept of physics-guided Gaussian process regression as a machine-learning-based coarse-graining technique that is broadly applicable and amenable to input from known physics-based relationships. Using a pair of case studies derived from molecular dynamics simulations, we demonstrate the attractive properties and superior performance of physics-guided Gaussian processes for coarse-graining relative to prevalent benchmarks. The key advantage of Gaussian-process-based coarse-graining is its ability to seamlessly integrate data-driven and physics-based information.more » « less
-
van_der_Giessen, Erik; Schultz, Peter_A; Bertin, Nicolas; Bulatov, Vasily_V; Cai, Wei; Csányi, Gábor; Foiles, Stephen_M; Geers, M_G_D; González, Carlos; Hütter, Markus; et al (, Modelling and Simulation in Materials Science and Engineering)Abstract Modeling and simulation is transforming modern materials science, becoming an important tool for the discovery of new materials and material phenomena, for gaining insight into the processes that govern materials behavior, and, increasingly, for quantitative predictions that can be used as part of a design tool in full partnership with experimental synthesis and characterization. Modeling and simulation is the essential bridge from good science to good engineering, spanning from fundamental understanding of materials behavior to deliberate design of new materials technologies leveraging new properties and processes. This Roadmap presents a broad overview of the extensive impact computational modeling has had in materials science in the past few decades, and offers focused perspectives on where the path forward lies as this rapidly expanding field evolves to meet the challenges of the next few decades. The Roadmap offers perspectives on advances within disciplines as diverse as phase field methods to model mesoscale behavior and molecular dynamics methods to deduce the fundamental atomic-scale dynamical processes governing materials response, to the challenges involved in the interdisciplinary research that tackles complex materials problems where the governing phenomena span different scales of materials behavior requiring multiscale approaches. The shift from understanding fundamental materials behavior to development of quantitative approaches to explain and predict experimental observations requires advances in the methods and practice in simulations for reproducibility and reliability, and interacting with a computational ecosystem that integrates new theory development, innovative applications, and an increasingly integrated software and computational infrastructure that takes advantage of the increasingly powerful computational methods and computing hardware.more » « less