skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Silva, Denise"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. As climate change drives health declines of tropical reef species, diseases are further eroding ecosystem function and habitat resilience. Coral disease impacts many areas around the world, removing some foundation species to recorded low levels and thwarting worldwide efforts to restore reefs. What we know about coral disease processes remains insufficient to overcome many current challenges in reef conservation, yet cumulative research and management practices are revealing new disease agents (including bacteria, viruses, and eukaryotes), genetic host disease resistance factors, and innovative methods to prevent and mitigate epizootic events (probiotics, antibiotics, and disease resistance breeding programs). The recent outbreak of stony coral tissue loss disease across the Caribbean has reenergized and mobilized the research community to think bigger and do more. This review therefore focuses largely on novel emerging insights into the causes and mechanisms of coral disease and their applications to coral restoration and conservation. 
    more » « less
  2. Over the past two decades, researchers have searched for methods to better understand the relationship between coral hosts and their microbiomes. Data on how coral-associated bacteria are involved in their host’s responses to stressors that cause bleaching, disease, and other deleterious effects can elucidate how they may mediate, ameliorate, and exacerbate interactions between the coral and the surrounding environment. At the same time tracking coral bacteria dynamics can reveal previously undiscovered mechanisms of coral resilience, acclimatization, and evolutionary adaptation. Although modern techniques have reduced the cost of conducting high-throughput sequencing of coral microbes, to explore the composition, function, and dynamics of coral-associated bacteria, it is necessary that the entire procedure, from collection to sequencing, and subsequent analysis be carried out in an objective and effective way. Corals represent a difficult host with which to work, and unique steps in the process of microbiome assessment are necessary to avoid inaccuracies or unusable data in microbiome libraries, such as off-target amplification of host sequences. Here, we review, compare and contrast, and recommend methods for sample collection, preservation, and processing (e.g., DNA extraction) pipelines to best generate 16S amplicon libraries with the aim of tracking coral microbiome dynamics. We also discuss some basic quality assurance and general bioinformatic methods to analyze the diversity, composition, and taxonomic profiles of the microbiomes. This review aims to be a generalizable guide for researchers interested in starting and modifying the molecular biology aspects of coral microbiome research, highlighting best practices and tricks of the trade. 
    more » « less
  3. Abstract The COVID-19 pandemic has impacted billions of people around the world. To capture some of these impacts in the United States, we are conducting a nationwide longitudinal survey collecting information about activity and travel-related behaviors and attitudes before, during, and after the COVID-19 pandemic. The survey questions cover a wide range of topics including commuting, daily travel, air travel, working from home, online learning, shopping, and risk perception, along with attitudinal, socioeconomic, and demographic information. The survey is deployed over multiple waves to the same respondents to monitor how behaviors and attitudes evolve over time. Version 1.0 of the survey contains 8,723 responses that are publicly available. This article details the methodology adopted for the collection, cleaning, and processing of the data. In addition, the data are weighted to be representative of national and regional demographics. This survey dataset can aid researchers, policymakers, businesses, and government agencies in understanding both the extent of behavioral shifts and the likelihood that changes in behaviors will persist after COVID-19. 
    more » « less
  4. Human behavior is notoriously difficult to change, but a disruption of the magnitude of the COVID-19 pandemic has the potential to bring about long-term behavioral changes. During the pandemic, people have been forced to experience new ways of interacting, working, learning, shopping, traveling, and eating meals. A critical question going forward is how these experiences have actually changed preferences and habits in ways that might persist after the pandemic ends. Many observers have suggested theories about what the future will bring, but concrete evidence has been lacking. We present evidence on how much US adults expect their own postpandemic choices to differ from their prepandemic lifestyles in the areas of telecommuting, restaurant patronage, air travel, online shopping, transit use, car commuting, uptake of walking and biking, and home location. The analysis is based on a nationally representative survey dataset collected between July and October 2020. Key findings include that the “new normal” will feature a doubling of telecommuting, reduced air travel, and improved quality of life for some. 
    more » « less
  5. Abstract microbeMASST, a taxonomically informed mass spectrometry (MS) search tool, tackles limited microbial metabolite annotation in untargeted metabolomics experiments. Leveraging a curated database of >60,000 microbial monocultures, users can search known and unknown MS/MS spectra and link them to their respective microbial producers via MS/MS fragmentation patterns. Identification of microbe-derived metabolites and relative producers without a priori knowledge will vastly enhance the understanding of microorganisms’ role in ecology and human health. 
    more » « less