Computing demands for large scientific experiments, such as the CMS experiment at the CERN LHC, will increase dramatically in the next decades. To complement the future performance increases of software running on central processing units (CPUs), explorations of coprocessor usage in data processing hold great potential and interest. Coprocessors are a class of computer processors that supplement CPUs, often improving the execution of certain functions due to architectural design choices. We explore the approach of Services for Optimized Network Inference on Coprocessors (SONIC) and study the deployment of this as-a-service approach in large-scale data processing. In the studies, we take a data processing workflow of the CMS experiment and run the main workflow on CPUs, while offloading several machine learning (ML) inference tasks onto either remote or local coprocessors, specifically graphics processing units (GPUs). With experiments performed at Google Cloud, the Purdue Tier-2 computing center, and combinations of the two, we demonstrate the acceleration of these ML algorithms individually on coprocessors and the corresponding throughput improvement for the entire workflow. This approach can be easily generalized to different types of coprocessors and deployed on local CPUs without decreasing the throughput performance. We emphasize that the SONIC approach enables high coprocessor usage and enables the portability to run workflows on different types of coprocessors.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Free, publicly-accessible full text available December 1, 2025 -
Abstract This paper describes the
Combine software package used for statistical analyses by the CMS Collaboration. The package, originally designed to perform searches for a Higgs boson and the combined analysis of those searches, has evolved to become the statistical analysis tool presently used in the majority of measurements and searches performed by the CMS Collaboration. It is not specific to the CMS experiment, and this paper is intended to serve as a reference for users outside of the CMS Collaboration, providing an outline of the most salient features and capabilities. Readers are provided with the possibility to runCombine and reproduce examples provided in this paper using a publicly available container image. Since the package is constantly evolving to meet the demands of ever-increasing data sets and analysis sophistication, this paper cannot cover all details ofCombine . However, the online documentation referenced within this paper provides an up-to-date and complete user guide.Free, publicly-accessible full text available December 1, 2025 -
Abstract Using proton–proton collision data corresponding to an integrated luminosity of
collected by the CMS experiment at$$140\hbox { fb}^{-1}$$ , the$$\sqrt{s}= 13\,\text {Te}\hspace{-.08em}\text {V} $$ decay is observed for the first time, with a statistical significance exceeding 5 standard deviations. The relative branching fraction, with respect to the$${{{\Lambda }} _{\text {b}}^{{0}}} \rightarrow {{\text {J}/\uppsi }} {{{\Xi }} ^{{-}}} {{\text {K}} ^{{+}}} $$ decay, is measured to be$${{{\Lambda }} _{\text {b}}^{{0}}} \rightarrow {{{\uppsi }} ({2\textrm{S}})} {{\Lambda }} $$ , where the first uncertainty is statistical, the second is systematic, and the third is related to the uncertainties in$$\mathcal {B}({{{\Lambda }} _{\text {b}}^{{0}}} \rightarrow {{\text {J}/\uppsi }} {{{\Xi }} ^{{-}}} {{\text {K}} ^{{+}}} )/\mathcal {B}({{{\Lambda }} _{\text {b}}^{{0}}} \rightarrow {{{\uppsi }} ({2\textrm{S}})} {{\Lambda }} ) = [3.38\pm 1.02\pm 0.61\pm 0.03]\%$$ and$$\mathcal {B}({{{\uppsi }} ({2\textrm{S}})} \rightarrow {{\text {J}/\uppsi }} {{{\uppi }} ^{{+}}} {{{\uppi }} ^{{-}}} )$$ .$$\mathcal {B}({{{\Xi }} ^{{-}}} \rightarrow {{\Lambda }} {{{\uppi }} ^{{-}}} )$$ Free, publicly-accessible full text available October 1, 2025 -
Abstract A measurement is presented of a ratio observable that provides a measure of the azimuthal correlations among jets with large transverse momentum
. This observable is measured in multijet events over the range of$$p_{\textrm{T}}$$ –$$p_{\textrm{T}} = 360$$ based on data collected by the CMS experiment in proton-proton collisions at a centre-of-mass energy of 13$$3170\,\text {Ge}\hspace{-.08em}\text {V} $$ , corresponding to an integrated luminosity of 134$$\,\text {Te}\hspace{-.08em}\text {V}$$ . The results are compared with predictions from Monte Carlo parton-shower event generator simulations, as well as with fixed-order perturbative quantum chromodynamics (pQCD) predictions at next-to-leading-order (NLO) accuracy obtained with different parton distribution functions (PDFs) and corrected for nonperturbative and electroweak effects. Data and theory agree within uncertainties. From the comparison of the measured observable with the pQCD prediction obtained with the NNPDF3.1 NLO PDFs, the strong coupling at the Z boson mass scale is$$\,\text {fb}^{-1}$$ , where the total uncertainty is dominated by the scale dependence of the fixed-order predictions. A test of the running of$$\alpha _\textrm{S} (m_{{\textrm{Z}}}) =0.1177 \pm 0.0013\, \text {(exp)} _{-0.0073}^{+0.0116} \,\text {(theo)} = 0.1177_{-0.0074}^{+0.0117}$$ in the$$\alpha _\textrm{S}$$ region shows no deviation from the expected NLO pQCD behaviour.$$\,\text {Te}\hspace{-.08em}\text {V}$$ Free, publicly-accessible full text available August 1, 2025 -
Abstract A search for
and$${\text {Z}{}{}} {\text {Z}{}{}} $$ production in the$${\text {Z}{}{}} {\text {H}{}{}} $$ final state is presented, where H is the standard model (SM) Higgs boson. The search uses an event sample of proton-proton collisions corresponding to an integrated luminosity of 133$${\text {b}{}{}} {\bar{{\text {b}{}{}}}{}{}} {\text {b}{}{}} {\bar{{\text {b}{}{}}}{}{}} $$ collected at a center-of-mass energy of 13$$\,\text {fb}^{-1}$$ with the CMS detector at the CERN LHC. The analysis introduces several novel techniques for deriving and validating a multi-dimensional background model based on control samples in data. A multiclass multivariate classifier customized for the$$\,\text {Te}\hspace{-.08em}\text {V}$$ final state is developed to derive the background model and extract the signal. The data are found to be consistent, within uncertainties, with the SM predictions. The observed (expected) upper limits at 95% confidence level are found to be 3.8 (3.8) and 5.0 (2.9) times the SM prediction for the$${\text {b}{}{}} {\bar{{\text {b}{}{}}}{}{}} {\text {b}{}{}} {\bar{{\text {b}{}{}}}{}{}} $$ and$${\text {Z}{}{}} {\text {Z}{}{}} $$ production cross sections, respectively.$${\text {Z}{}{}} {\text {H}{}{}} $$ Free, publicly-accessible full text available July 1, 2025 -
Abstract The measurement of Z boson production is presented as a method to determine the integrated luminosity of CMS data sets. The analysis uses proton–proton collision data, recorded by the CMS experiment at the CERN LHC in 2017 at a center-of-mass energy of 13
. Events with Z bosons decaying into a pair of muons are selected. The total number of Z bosons produced in a fiducial volume is determined, together with the identification efficiencies and correlations from the same data set, in small intervals of 20$$\,\text {Te\hspace{-.08em}V}$$ of integrated luminosity, thus facilitating the efficiency and rate measurement as a function of time and instantaneous luminosity. Using the ratio of the efficiency-corrected numbers of Z bosons, the precisely measured integrated luminosity of one data set is used to determine the luminosity of another. For the first time, a full quantitative uncertainty analysis of the use of Z bosons for the integrated luminosity measurement is performed. The uncertainty in the extrapolation between two data sets, recorded in 2017 at low and high instantaneous luminosity, is less than 0.5%. We show that the Z boson rate measurement constitutes a precise method, complementary to traditional methods, with the potential to improve the measurement of the integrated luminosity.$$\,\text {pb}^{-1}$$ Free, publicly-accessible full text available January 1, 2025 -
Abstract The strange quark content of the proton is probed through the measurement of the production cross section for a W boson and a charm (c) quark in proton–proton collisions at a center-of-mass energy of 13
. The analysis uses a data sample corresponding to a total integrated luminosity of 138$$\,\text {Te}\hspace{-.08em}\text {V}$$ collected with the CMS detector at the LHC. The W bosons are identified through their leptonic decays to an electron or a muon, and a neutrino. Charm jets are tagged using the presence of a muon or a secondary vertex inside the jet. The$$\,\text {fb}^{-1}$$ production cross section and the cross section ratio$$\hbox {W}+\hbox {c}$$ are measured inclusively and differentially as functions of the transverse momentum and the pseudorapidity of the lepton originating from the W boson decay. The precision of the measurements is improved with respect to previous studies, reaching 1% in$$R_\textrm{c}^{\pm }= \sigma ({\hbox {W}}^{+}+\bar{\text {c}})/\sigma (\hbox {W}^{-}+{\textrm{c}})$$ . The measurements are compared with theoretical predictions up to next-to-next-to-leading order in perturbative quantum chromodynamics.$$R_\textrm{c}^{\pm }= 0.950 \pm 0.005\,\text {(stat)} \pm 0.010 \,\text {(syst)} $$ Free, publicly-accessible full text available January 1, 2025 -
Abstract The mass of the top quark is measured in 36.3
of LHC proton–proton collision data collected with the CMS detector at$$\,\text {fb}^{-1}$$ . The measurement uses a sample of top quark pair candidate events containing one isolated electron or muon and at least four jets in the final state. For each event, the mass is reconstructed from a kinematic fit of the decay products to a top quark pair hypothesis. A profile likelihood method is applied using up to four observables per event to extract the top quark mass. The top quark mass is measured to be$$\sqrt{s}=13\,\text {Te}\hspace{-.08em}\text {V} $$ . This approach significantly improves the precision over previous measurements.$$171.77\pm 0.37\,\text {Ge}\hspace{-.08em}\text {V} $$ -
Abstract A search for decays to invisible particles of Higgs bosons produced in association with a top-antitop quark pair or a vector boson, which both decay to a fully hadronic final state, has been performed using proton-proton collision data collected at
by the CMS experiment at the LHC, corresponding to an integrated luminosity of 138$${\sqrt{s}=13\,\text {Te}\hspace{-.08em}\text {V}}$$ . The 95% confidence level upper limit set on the branching fraction of the 125$$\,\text {fb}^{-1}$$ Higgs boson to invisible particles,$$\,\text {Ge}\hspace{-.08em}\text {V}$$ , is 0.54 (0.39 expected), assuming standard model production cross sections. The results of this analysis are combined with previous$${\mathcal {B}({\textrm{H}} \rightarrow \text {inv})}$$ searches carried out at$${\mathcal {B}({\textrm{H}} \rightarrow \text {inv})}$$ , 8, and 13$${\sqrt{s}=7}$$ in complementary production modes. The combined upper limit at 95% confidence level on$$\,\text {Te}\hspace{-.08em}\text {V}$$ is 0.15 (0.08 expected).$${\mathcal {B}({\textrm{H}} \rightarrow \text {inv})}$$