# Search for:All records

Creators/Authors contains: "Silwal, S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

1. We give a concentration inequality for a stochastic version of the facility location problem. We show the objective Cn = minF[0;1]2 jFj +Px2X minf2F kx 􀀀 fk is concentrated in an interval of length O(n1=6) and E[Cn] = (n2=3) if the input X consists of i.i.d. uniform points in the unit square. Our main tool is to use a geometric quantity, previously used in the design of approximation algorithms for the facility location problem, to analyze a martingale process. Many of our techniques generalize to other settings.
Free, publicly-accessible full text available March 1, 2023
2. We explore algorithms and limitations for sparse optimization problems such as sparse linear regression and robust linear regression. The goal of the sparse linear regression problem is to identify a small number of key features, while the goal of the robust linear regression problem is to identify a small number of erroneous measurements. Specifically, the sparse linear regression problem seeks a k-sparse vector x ∈ Rd to minimize ‖Ax − b‖2, given an input matrix A ∈ Rn×d and a target vector b ∈ Rn, while the robust linear regression problem seeks a set S that ignores at most k rows and a vector x to minimize ‖(Ax − b)S ‖2. We first show bicriteria, NP-hardness of approximation for robust regression building on the work of [OWZ15] which implies a similar result for sparse regression. We further show fine-grained hardness of robust regression through a reduction from the minimum-weight k-clique conjecture. On the positive side, we give an algorithm for robust regression that achieves arbitrarily accurate additive error and uses runtime that closely matches the lower bound from the fine-grained hardness result, as well as an algorithm for sparse regression with similar runtime. Both our upper and lower bounds relymore »
3. We consider the question of speeding up classic graph algorithms with machine-learned predictions. In this model, algorithms are furnished with extra advice learned from past or similar instances. Given the additional information, we aim to improve upon the traditional worst-case run-time guarantees. Our contributions are the following: (i) We give a faster algorithm for minimum-weight bipartite matching via learned duals, improving the recent result by Dinitz, Im, Lavastida, Moseley and Vassilvitskii (NeurIPS, 2021); (ii) We extend the learned dual approach to the single-source shortest path problem (with negative edge lengths), achieving an almost linear runtime given sufficiently accurate predictions which improves upon the classic fastest algorithm due to Goldberg (SIAM J. Comput., 1995); (iii) We provide a general reduction-based framework for learning-based graph algorithms, leading to new algorithms for degree-constrained subgraph and minimum-cost 0-1 flow, based on reductions to bipartite matching and the shortest path problem. Finally, we give a set of general learnability theorems, showing that the predictions required by our algorithms can be efficiently learned in a PAC fashion