- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000000020000
- More
- Availability
-
02
- Author / Contributor
- Filter by Author / Creator
-
-
Simha, Surabhi N (2)
-
Ting, Lena H (2)
-
Alshareef, Amro A (1)
-
Campbell, Kenneth S (1)
-
Cope, Timothy C (1)
-
De_Groote, Friedl (1)
-
Milburn, Gregory N (1)
-
Nardelli, Paul (1)
-
Sawicki, Gregory S (1)
-
van_der_Zee, Tim J (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Exoskeletons assist and augment human movement, but their effects on proprioceptive feedback remain poorly understood. We examined how parallel exoskeleton stiffness influences primary muscle spindle firing. In an anesthetized rat preparation, controlled stretches of the medial gastrocnemius were applied with springs (0–0.5 N/mm) attached in parallel to the muscle-tendon unit (MTU) to simulate passive exoskeleton assistance. Fascicle length was measured with sonomicrometry, force and MTU length with a servo motor, and spindle instantaneous firing rate (IFR) with dorsal root recordings. Increasing exoskeleton stiffness decreased biological muscle force (3.1 ± 0.6 N to 1.6 ± 0.6 N, p < 0.001) and stiffness (4.4 ± 1.5 N/mm to 2.3 ± 1.3 N/mm, p < 0.01), while fascicle length increased (7.9 ± 1.3 mm to 8.3 ± 1.5 mm, p < 0.005). Despite these altered mechanics, spindle firing did not significantly change, and showed weak correlations with muscle length, velocity, force, and yank (R2≤ 0.14). These results indicate that exoskeleton stiffness modifies fascicle dynamics without altering spindle firing. Previously proposed models of primary afferent firing did not sufficiently explain these results. This is the first in situ investigation of exoskeleton effects on primary afferent feedback during active contractions.more » « lessFree, publicly-accessible full text available November 5, 2026
-
van_der_Zee, Tim J; Simha, Surabhi N; Milburn, Gregory N; Campbell, Kenneth S; Ting, Lena H; De_Groote, Friedl (, bioRxiv)Abstract Musculoskeletal simulations can offer valuable insight into how the properties of our musculoskeletal system influence the biomechanics of our daily movements. One such property is muscle’s history-dependent initial resistance to stretch, also known as short-range stiffness, which is key to stabilizing movements in response to external perturbations. Short-range stiffness is poorly captured by existing musculoskeletal simulations since they employ phenomenological Hill-type muscle models that lack the mechanisms underlying short-range stiffness. While it has been previously shown that biophysical cross-bridge models can reproduce muscle short-range-stiffness, it is unclear which specific biophysical properties are necessary to capture history-dependent muscle force responses in behaviorally relevant conditions. Here, we tested the ability of various biophysical cross-bridge models to reproduce empirical short-range stiffness and its history-dependent changes across a broad range of behaviorally relevant length changes and activation levels, using an existing dataset on permeabilized rat soleus muscle fibers (N = 11). We found that a biophysical cross-bridge model with cooperative myofilament activation reproduced the effects of muscle activation (R2= 0.86), stretch amplitude (R2= 0.71) and isometric recovery time (R2= 0.79) on history-dependent changes in short-range stiffness after shortening. Similar results were obtained when the cross-bridge distribution of the biophysical model was approximated by a Gaussian (R2= 0.73 - 0.88), but at a 20 times lower computational cost. These effects could not be reproduced by either a biophysical cross-bridge model without cooperative myofilament activation or a Hill-type model (R2< 0.5). The reduced computational demand of the Gaussian-approximated models facilitates implementing biophysical cross-bridge models with cooperative myofilament activation in musculoskeletal simulations to improve the prediction of short-range stiffness during movements.more » « lessFree, publicly-accessible full text available November 3, 2026
An official website of the United States government
