Supercontinuum (SC) sources offer high illumination power from a single-mode fiber with large spectral bandwidth including the visible spectrum, which is a growing application area for optical coherence tomography (OCT). However, SC spectra suffer from pulse-to-pulse variations, increasing noise in the resulting images. By simultaneously collecting a normalization spectrum, OCT image noise can be reduced by more than half (7 dB) for single pulses without any pulse averaging using only simple optical components.
- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
00020
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Rogers, Jeremy D. (2)
-
Simmons, Zach J. (2)
-
Gabardi, Kaitlyn A. (1)
-
Johnston, Kadina E. (1)
-
Kita, Angela M. (1)
-
Merrins, Matthew J. (1)
-
Nethery, Ethan T. (1)
-
Niemeier, Ryan C. (1)
-
Postlewaite, Jack T. (1)
-
Ratliff, Benjamin A. (1)
-
Rupel, John W. (1)
-
Sdao, Sophia M. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
2022 USENIX Annual Technical Conference (0)
-
:Chaosong Huang, Gang Lu (0)
-
A. Agarwal (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
-
Rupel, John W. ; Sdao, Sophia M. ; Johnston, Kadina E. ; Nethery, Ethan T. ; Gabardi, Kaitlyn A. ; Ratliff, Benjamin A. ; Simmons, Zach J. ; Postlewaite, Jack T. ; Kita, Angela M. ; Rogers, Jeremy D. ; et al ( , The Biophysicist)null (Ed.)ABSTRACT Advances in fluorescent biosensors allow researchers to spatiotemporally monitor a diversity of biochemical reactions and secondary messengers. However, commercial microscopes for the specific application of Förster Resonance Energy Transfer (FRET) are prohibitively expensive to implement in the undergraduate classroom, owing primarily to the dynamic range required and need for ratiometric emission imaging. The purpose of this article is to provide a workflow to design a low-cost, FRET-enabled microscope and to equip the reader with sufficient knowledge to compare commercial light sources, optics, and cameras to modify the device for a specific application. We used this approach to construct a microscope that was assembled by undergraduate students with no prior microscopy experience that is suitable for most single-cell cyan and yellow fluorescent protein FRET applications. The utility of this design was demonstrated by measuring small metabolic oscillations by using a lactate FRET sensor expressed in primary mouse pancreatic islets, highlighting the biologically suitable signal-to-noise ratio and dynamic range of our compact microscope. The instructions in this article provide an effective teaching tool for undergraduate educators and students interested in implementing FRET in a cost-effective manner.more » « less