skip to main content

Search for: All records

Creators/Authors contains: "Simon Zhang, Mengbai Xiao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The computation of Vietoris-Rips persistence barcodes is both execution-intensive and memory-intensive. In this paper, we study the computational structure of Vietoris-Rips persistence barcodes, and identify several unique mathematical properties and algorithmic opportunities with connections to the GPU. Mathematically and empirically, we look into the properties of apparent pairs, which are independently identifiable persistence pairs comprising up to 99% of persistence pairs. We give theoretical upper and lower bounds of the apparent pair rate and model the average case. We also design massively parallel algorithms to take advantage of the very large number of simplices that can be processed independently of each other. Having identified these opportunities, we develop a GPU-accelerated software for computing Vietoris-Rips persistence barcodes, called Ripser++. The software achieves up to 30x speedup over the total execution time of the original Ripser and also reduces CPU-memory usage by up to 2.0x. We believe our GPU-acceleration based efforts open a new chapter for the advancement of topological data analysis in the post-Moore's Law era. 
    more » « less
  2. Persistent homology (PH) matrix reduction is an important tool for data analytics in many application areas. Due to its highly irregular execution patterns in computation, it is challenging to gain high efficiency in parallel processing for increasingly large data sets. In this paper, we introduce HYPHA, a HYbrid Persistent Homology matrix reduction Accelerator, to make parallel processing highly efficient on both GPU and multicore. The essential foundation of our algorithm design and implementation is the separation of SIMT and MIMD parallelisms in PH matrix reduction computation. With such a separation, we are able to perform massive parallel scanning operations on GPU in a super-fast manner, which also collects rich information from an input boundary matrix for further parallel reduction operations on multicore with high efficiency. The HYPHA framework may provide a general purpose guidance to high performance computing on multiple hardware accelerators. To our best knowledge, HYPHA achieves the highest performance in PH matrix reduction execution. Our experiments show speedups of up to 116x against the standard PH algorithm. Compared to the state-of-the-art parallel PH software packages, such as PHAT and DIPHA, HYPHA outperforms their fastest PH matrix reduction algorithms by factor up to 2.3x. 
    more » « less