skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Simon, Yoan_C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Polymersomes have gained a lot of attention in recent years. Their compartmentalized, hollow nature, stability and ability to transport both hydrophilic and hydrophobic cargo has made them attractive for increasingly complex applications in various fields of biomedicine, catalysis and diagnostics. Progress in these fields would therefore benefit from improvements in polymersome functionality. Recently, morphological control of polymersomes, namely the fabrication of various non‐spherical morphologies, has emerged as a means to enhance the usefulness of the polymersomes. In the present review, we highlight the most topical trends in this field and how these developments and the newly acquired knowledge about their nature can be leveraged towards applications. © 2021 Society of Chemical Industry 
    more » « less