skip to main content

Search for: All records

Creators/Authors contains: "Simoncelli, Eero P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Deep convolutional neural networks (CNNs) for image denoising are usually trained on large datasets. These models achieve the current state of the art, but they have difficulties generalizing when applied to data that deviate from the training distribution. Recent work has shown that it is possible to train denoisers on a single noisy image. These models adapt to the features of the test image, but their performance is limited by the small amount of information used to train them. Here we propose "GainTuning", in which CNN models pre-trained on large datasets are adaptively and selectively adjusted for individual test images. To avoid overfitting, GainTuning optimizes a single multiplicative scaling parameter (the "Gain") of each channel in the convolutional layers of the CNN. We show that GainTuning improves state-of-the-art CNNs on standard image-denoising benchmarks, boosting their denoising performance on nearly every image in a held-out test set. These adaptive improvements are even more substantial for test images differing systematically from the training data, either in noise level or image type. We illustrate the potential of adaptive denoising in a scientific application, in which a CNN is trained on synthetic data, and tested on real transmission-electron-microscope images. In contrast to the existingmore »methodology, GainTuning is able to faithfully reconstruct the structure of catalytic nanoparticles from these data at extremely low signal-to-noise ratios.« less
  2. null (Ed.)
    A deep convolutional neural network has been developed to denoise atomic-resolution transmission electron microscope image datasets of nanoparticles acquired using direct electron counting detectors, for applications where the image signal is severely limited by shot noise. The network was applied to a model system of CeO 2 -supported Pt nanoparticles. We leverage multislice image simulations to generate a large and flexible dataset for training the network. The proposed network outperforms state-of-the-art denoising methods on both simulated and experimental test data. Factors contributing to the performance are identified, including (a) the geometry of the images used during training and (b) the size of the network's receptive field. Through a gradient-based analysis, we investigate the mechanisms learned by the network to denoise experimental images. This shows that the network exploits both extended and local information in the noisy measurements, for example, by adapting its filtering approach when it encounters atomic-level defects at the nanoparticle surface. Extensive analysis has been done to characterize the network's ability to correctly predict the exact atomic structure at the nanoparticle surface. Finally, we develop an approach based on the log-likelihood ratio test that provides a quantitative measure of the agreement between the noisy observation and the atomic-levelmore »structure in the network-denoised image.« less
  3. Memories of the images that we have seen are thought to be reflected in the reduction of neural responses in high-level visual areas such as inferotemporal (IT) cortex, a phenomenon known as repetition suppression (RS). We challenged this hypothesis with a task that required rhesus monkeys to report whether images were novel or repeated while ignoring variations in contrast, a stimulus attribute that is also known to modulate the overall IT response. The monkeys’ behavior was largely contrast invariant, contrary to the predictions of an RS-inspired decoder, which could not distinguish responses to images that are repeated from those that are of lower contrast. However, the monkeys’ behavioral patterns were well predicted by a linearly decodable variant in which the total spike count was corrected for contrast modulation. These results suggest that the IT neural activity pattern that best aligns with single-exposure visual recognition memory behavior is not RS but rather sensory referenced suppression: reductions in IT population response magnitude, corrected for sensory modulation.

  4. Denoising is a fundamental challenge in scientific imaging. Deep convolutional neural networks (CNNs) provide the current state of the art in denoising natural images, where they produce impressive results. However, their potential has been inadequately explored in the context of scientific imaging. Denoising CNNs are typically trained on real natural images artificially corrupted with simulated noise. In contrast, in scientific applications, noiseless ground-truth images are usually not available. To address this issue, we propose a simulation-based denoising (SBD) framework, in which CNNs are trained on simulated images. We test the framework on data obtained from transmission electron microscopy (TEM), an imaging technique with widespread applications in material science, biology, and medicine. SBD outperforms existing techniques by a wide margin on a simulated benchmark dataset, as well as on real data. We analyze the generalization capability of SBD, demonstrating that the trained networks are robust to variations of imaging parameters and of the underlying signal structure. Our results reveal that state-of-the-art architectures for denoising photographic images may not be well adapted to scientific-imaging data. For instance, substantially increasing their field-of-view dramatically improves their performance on TEM images acquired at low signal-to-noise ratios. We also demonstrate that standard performance metrics for photographsmore »(such as PSNR and SSIM) may fail to produce scientifically meaningful evaluation. We propose several metrics to remedy this issue for the case of atomic resolution electron microscope images. In addition, we propose a technique, based on likelihood computations, to visualize the agreement between the structure of the denoised images and the observed data. Finally, we release a publicly available benchmark dataset of TEM images, containing 18,000 examples.« less
  5. Deep convolutional neural networks (CNNs) for video denoising are typically trained with supervision, assuming the availability of clean videos. However, in many applications, such as microscopy, noiseless videos are not available. To address this, we propose an Unsupervised Deep Video Denoiser (UDVD1), a CNN architecture designed to be trained exclusively with noisy data. The performance of UDVD is comparable to the supervised state-of-the-art, even when trained only on a single short noisy video. We demonstrate the promise of our approach in real-world imaging applications by denoising raw video, fluorescencemicroscopy and electron-microscopy data. In contrast to many current approaches to video denoising, UDVD does not require explicit motion compensation. This is advantageous because motion compensation is computationally expensive, and can be unreliable when the input data are noisy. A gradient-based analysis reveals that UDVD automatically adapts to local motion in the input noisy videos. Thus, the network learns to perform implicit motion compensation, even though it is only trained for denoising.