skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Simone, S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Context. Many physical processes taking place during the evolution of binary stellar systems remain poorly understood. The ever-expanding observational sample of X-ray binaries (XRBs) makes them excellent laboratories for constraining binary evolution theory. Such constraints and useful insights can be obtained by studying the effects of various physical assumptions on synthetic X-ray luminosity functions (XLFs) and comparing them with observed XLFs. Aims. In this work we focus on high-mass X-ray binaries (HMXBs) and study the effects on the XLF of various, poorly constrained assumptions regarding physical processes, such as the common-envelope phase, core collapse, and wind-fed accretion. Methods. We used the new binary population synthesis code POSYDON , which employs extensive precomputed grids of detailed stellar structure and binary evolution models, to simulate the entire evolution of binaries. We generated 96 synthetic XRB populations corresponding to different combinations of model assumptions, including different prescriptions for supernova kicks, supernova remnant masses, common-envelope evolution, circularization at the onset of Roche-lobe overflow, and observable wind-fed accretion. Results. The generated HMXB XLFs are feature-rich, deviating from the commonly assumed single power law. We find a break in our synthetic XLF at luminosity ∼10 38 erg s −1 , similar to observed XLFs. However, we also find a general overabundance of XRBs (up to a factor of ∼10 for certain model parameter combinations) driven primarily by XRBs with black hole accretors. Assumptions about the transient behavior of Be XRBs, asymmetric supernova kicks, and common-envelope physics can significantly affect the shape and normalization of our synthetic XLFs. We find that less well-studied assumptions regarding the circularization of the orbit at the onset of Roche-lobe overflow and criteria for the formation of an X-ray-emitting accretion disk around wind-accreting black holes can also impact our synthetic XLFs and reduce the discrepancy with observations. Conclusions. Our synthetic XLFs do not always agree well with observations, especially at intermediate X-ray luminosities, which is likely due to uncertainties in the adopted physical assumptions. While some model parameters leave distinct imprints on the shape of the synthetic XLFs and can reduce this deviation, others do not have a significant effect overall. Our study reveals the importance of large-scale parameter studies, highlighting the power of XRBs in constraining binary evolution theory. 
    more » « less
  2. null (Ed.)
  3. Long-duration gamma-ray bursts are thought to be associated with the core-collapse of massive, rapidly spinning stars and the formation of black holes. However, efficient angular momentum transport in stellar interiors, currently supported by asteroseismic and gravitational-wave constraints, leads to predominantly slowly-spinning stellar cores. Here, we report on binary stellar evolution and population synthesis calculations, showing that tidal interactions in close binaries not only can explain the observed subpopulation of spinning, merging binary black holes but also lead to long gamma-ray bursts at the time of black-hole formation. Given our model calibration against the distribution of isotropic-equivalent energies of luminous long gamma-ray bursts, we find that ≈10% of the GWTC-2 reported binary black holes had a luminous long gamma-ray burst associated with their formation, with GW190517 and GW190719 having a probability of ≈85% and ≈60%, respectively, being among them. Moreover, given an assumption about their average beaming fraction, our model predicts the rate density of long gamma-ray bursts, as a function of redshift, originating from this channel. For a constant beaming fraction f B  ∼ 0.05 our model predicts a rate density comparable to the observed one, throughout the redshift range, while, at redshift z  ∈ [0, 2.5], a tentative comparison with the metallicity distribution of observed LGRB host galaxies implies that between 20% to 85% of the observed long gamma-ray bursts may originate from progenitors of merging binary black holes. The proposed link between a potentially significant fraction of observed, luminous long gamma-ray bursts and the progenitors of spinning binary black-hole mergers allows us to probe the latter well outside the horizon of current-generation gravitational wave observatories, and out to cosmological distances. 
    more » « less
  4. null (Ed.)
    Long gamma-ray bursts are associated with the core-collapse of massive, rapidly spinning stars. However, the believed efficient angular momentum transport in stellar interiors leads to predominantly slowly-spinning stellar cores. Here, we report on binary stellar evolution and population synthesis calculations, showing that tidal interactions in close binaries not only can explain the observed sub-population of spinning, merging binary black holes, but also lead to long gamma-ray bursts at the time of black-hole formation, with rates matching the empirical ones. We find that ≈10% of the GWTC-2 reported binary black holes had a long gamma-ray burst associated with their formation, with GW190517 and GW190719 having a probability of ≈85% and ≈60%, respectively, being among them. 
    more » « less
  5. Abstract The Laser Interferometer Space Antenna (LISA) will be a transformative experiment for gravitational wave astronomy, and, as such, it will offer unique opportunities to address many key astrophysical questions in a completely novel way. The synergy with ground-based and space-born instruments in the electromagnetic domain, by enabling multi-messenger observations, will add further to the discovery potential of LISA. The next decade is crucial to prepare the astrophysical community for LISA’s first observations. This review outlines the extensive landscape of astrophysical theory, numerical simulations, and astronomical observations that are instrumental for modeling and interpreting the upcoming LISA datastream. To this aim, the current knowledge in three main source classes for LISA is reviewed; ultra-compact stellar-mass binaries, massive black hole binaries, and extreme or interme-diate mass ratio inspirals. The relevant astrophysical processes and the established modeling techniques are summarized. Likewise, open issues and gaps in our understanding of these sources are highlighted, along with an indication of how LISA could help making progress in the different areas. New research avenues that LISA itself, or its joint exploitation with upcoming studies in the electromagnetic domain, will enable, are also illustrated. Improvements in modeling and analysis approaches, such as the combination of numerical simulations and modern data science techniques, are discussed. This review is intended to be a starting point for using LISA as a new discovery tool for understanding our Universe. 
    more » « less
  6. This study investigates how Learning Assistants (LAs) and related course features are associated with inequities in student learning in introductory university physics courses. 2,868 physics students’ paired pre- and post-test scores on concept inventories from 67 classes in 16 LA Alliance member institutions are examined in this investigation. The concept inventories included the Force Concept Inventory, Force and Motion Conceptual Evaluation, and the Conceptual Survey of Electricity and Magnetism. Our analyses include a multiple linear regression model that examines the impact of student (e.g. gender and race) and course level variables (e.g. presence of LAs and Concept Inventory used) on student learning outcomes (Cohen’s d effect size) across classroom contexts. The presence of LAs was found to either remove or invert the traditional learning gaps between students from dominant and non-dominant populations. Significant differences in student performance were also found across the concept inventories. 
    more » « less
  7. This study investigated whether and how Learning Assistant (LA) support is linked to student outcomes in Physics courses nationwide. Paired student concept inventory scores were collected over three semesters from 3,753 students, representing 69 courses, and 40 instructors, from 17 LA Alliance member institutions. Each participating student completed an online concept inventory at the beginning (pre) and end (post) of each term. The physics concept inventories tested included the Force Concept Inventory (FCI), Conceptual Survey of Electricity and Magnetism (CSEM), Force and Motion Concept Evaluation (FMCE) and the Brief Electricity and Magnetism Assessment (BEMA). Across instruments, Cohen’s d effect sizes were 1.4 times higher, on average, for courses supported by LAs compared to courses without LA support. Preliminary findings indicate that physics students' outcomes may be most effective when LA support is utilized in laboratory settings (1.9 times higher than no LA support) in comparison to lecture (1.4 times higher), recitations (1.5 times higher), or unknown uses (1.3 times higher). Additional research will inform LA-implementation best practices across disciplines. 
    more » « less
  8. This study investigates differences in student responses to in-class and online administrations of the Force Concept Inventory (FCI), Conceptual Survey of Electricity and Magnetism (CSEM), and the Colorado Learning Attitudes about Science Survey (CLASS). Close to 700 physics students from 12 sections of three different courses were instructed to complete the concept inventory relevant to their course, either the FCI or CSEM, and the CLASS. Each student was randomly assigned to take one of the surveys in class and the other survey online using the LA Supported Student Outcomes (LASSO) system hosted by the Learning Assistant Alliance (LAA). We examine how testing environments and instructor practices affect participation rates and identify best practices for future use. 
    more » « less
  9. A<sc>bstract</sc> A comprehensive study of the local and nonlocal amplitudes contributing to the decayB0→K*0(→K+π+μis performed by analysing the phase-space distribution of the decay products. The analysis is based onppcollision data corresponding to an integrated luminosity of 8.4 fb−1collected by the LHCb experiment. This measurement employs for the first time a model of both one-particle and two-particle nonlocal amplitudes, and utilises the complete dimuon mass spectrum without any veto regions around the narrow charmonium resonances. In this way it is possible to explicitly isolate the local and nonlocal contributions and capture the interference between them. The results show that interference with nonlocal contributions, although larger than predicted, only has a minor impact on the Wilson Coefficients determined from the fit to the data. For the local contributions, the Wilson Coefficient$$ {\mathcal{C}}_9 $$ C 9 , responsible for vector dimuon currents, exhibits a 2.1σdeviation from the Standard Model expectation. The Wilson Coefficients$$ {\mathcal{C}}_{10} $$ C 10 ,$$ {\mathcal{C}}_9^{\prime } $$ C 9 and$$ {\mathcal{C}}_{10}^{\prime } $$ C 10 are all in better agreement than$$ {\mathcal{C}}_9 $$ C 9 with the Standard Model and the global significance is at the level of 1.5σ. The model used also accounts for nonlocal contributions fromB0→ K*0+τ→ μ+μ] rescattering, resulting in the first direct measurement of thebsττvector effective-coupling$$ {\mathcal{C}}_{9\tau } $$ C 9 τ
    more » « less
    Free, publicly-accessible full text available September 1, 2025