skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Simonetti, David"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Modern scientific workflows desire to mix several different comput- ing modalities: self-contained computational tasks, data-intensive transformations, and serverless function calls. To date, these modali- ties have required distinct system architectures with different sched- uling objectives and constraints. In this paper, we describe how TaskVine, a new workflow execution platform, combines these modalities into an execution platform with shared abstractions. We demonstrate results of the system executing a machine learning workflow with combined standalone tasks and serverless functions. 
    more » « less
  2. Many scientific applications are expressed as high-throughput workflows that consist of large graphs of data assets and tasks to be executed on large parallel and distributed systems. A chal- lenge in executing these workflows is managing data: both datasets and software must be efficiently distributed to cluster nodes; inter- mediate data must be conveyed between tasks; output data must be delivered to its destination. Scaling problems result when these actions are performed in an uncoordinated manner on a shared filesystem. To address this problem, we introduce TaskVine: a sys- tem for exploiting the aggregate local storage and network capacity of a large cluster. TaskVine tracks the lifetime of data in a workflow –from archival sources to final outputs– making use of local storage to distribute, and re-use data wherever possible. We describe the architecture and novel capabilities of TaskVine, and demonstrate its use with applications in genomics, high energy physics, molecular dynamics, and machine learning. 
    more » « less
  3. An increasing number of distributed applications operate by dispatching function invocations across the nodes of a distributed system. To operate correctly, the code and data dependencies of the function must be distributed along with the invocations in some way. When translating applications to work on large scale distributed systems, managing these dependencies becomes challenging: delivery must be scalable to thousands of nodes; the dependencies must be consistent across the system; and the method must be usable by an unprivileged developer. As a solution, in this paper we present PONCHO, which is a lightweight Python based toolkit which allows users to discover, package, and deploy dependencies as an integral part of distributed applications. PONCHO encapsulates a set of commands to be executed within an environment. PONCHO offers a lightweight solution to create and manage environments increasing the portability of scientific applications as well as reproducibility. In this paper, we evaluate PONCHO with real-world applications in the fields of physics, computational chemistry, and hyperparameter optimization, We observe the challenges that arise when creating and distributing an environment and measure the overheads that emerge as a result. 
    more » « less