Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 6, 2025
-
Abstract A single column model with parameterized large‐scale (LS) dynamics is used to better understand the response of steady‐state tropical precipitation to relative sea surface temperature under various representations of radiation, convection, and circulation. The large‐scale dynamics are parametrized via the weak temperature gradient (WTG), damped gravity wave (DGW), and spectral weak temperature gradient (Spectral WTG) method in NCAR's Single Column Atmosphere Model (SCAM6). Radiative cooling is either specified or interactive, and the convective parameterization is run using two different values of a parameter that controls the degree of convective inhibition. Results are interpreted in the context of the Global Atmospheric System Studies ‐Weak Temperature Gradient (GASS‐WTG) Intercomparison project. Using the same parameter settings and simulation configuration as in the GASS‐WTG Intercomparison project, SCAM6 under the WTG and DGW methods produces erratic results, suggestive of numerical instability. However, when key parameters are changed to weaken the large‐scale circulation's damping of tropospheric temperature variations, SCAM6 performs comparably to single column models in the GASS‐WTG Intercomparison project. The Spectral WTG method is less sensitive to changes in convection and radiation than are the other two methods, performing qualitatively similarly across all configurations considered. Under all three methods, circulation strength, represented in 1D by grid‐scale vertical velocity, is decreased when barriers to convection are reduced. This effect is most extreme under specified radiative cooling, and is shown to come from increased static stability in the column's reference radiative‐convective equilibrium profile. This argument can be extended to interactive radiation cases as well, though perhaps less conclusively.more » « less
-
Abstract Major sudden stratospheric warmings (SSWs), vortex formation, and final breakdown dates are key highlight points of the stratospheric polar vortex. These phenomena are relevant for stratosphere‐troposphere coupling, which explains the interest in understanding their future changes. However, up to now, there is not a clear consensus on which projected changes to the polar vortex are robust, particularly in the Northern Hemisphere, possibly due to short data record or relatively moderate CO2forcing. The new simulations performed under the Coupled Model Intercomparison Project, Phase 6, together with the long daily data requirements of the DynVarMIP project in preindustrial and quadrupled CO2(4xCO2) forcing simulations provide a new opportunity to revisit this topic by overcoming the limitations mentioned above. In this study, we analyze this new model output to document the change, if any, in the frequency of SSWs under 4xCO2forcing. Our analysis reveals a large disagreement across the models as to the sign of this change, even though most models show a statistically significant change. As for the near‐surface response to SSWs, the models, however, are in good agreement as to this signal over the North Atlantic: There is no indication of a change under 4xCO2forcing. Over the Pacific, however, the change is more uncertain, with some indication that there will be a larger mean response. Finally, the models show robust changes to the seasonal cycle in the stratosphere. Specifically, we find a longer duration of the stratospheric polar vortex and thus a longer season of stratosphere‐troposphere coupling.more » « less
An official website of the United States government
