The
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract J = 2 → 1 transition of CO near 230 GHz and theJ = 3 → 2 line of HCN at 265 GHz have been imaged in the envelope of the red hypergiant star, VY Canis Majoris (VY CMa), using the Atacama Large Millimeter Array (ALMA) with angular resolutions 0.″2–1.″5; single-dish data were added to provide sensitivity up to 30″. These images reveal a far more complex envelope, with previously unseen outflows extending 4″–9″ from the star. These new structures include an arc-like outflow with an angular separation of ∼9″ northeast from the stellar position (“NE Arc”), twin fingerlike features approximately 4″ to the north/northeast (“NE Extension”), and a roughly spherical region observed ∼7″ E of the star (“E Bubble”). The NE Arc appears to be decelerating from base (V LSR∼ 7 km s−1) to tip (V LSR∼ 18 km s−1), while the NE Extension is blueshifted withV LSR∼ −7 km s−1. Among the new features, HCN is only detected in the NE Arc. In addition, known structures Arc 1, Arc 2, and NW Arc, as well as other features closer to the star, are closely replicated in CO, suggesting that the gas and dust are well mixed. The CO spectra are consistent with themore » -
Free, publicly-accessible full text available May 22, 2024
-
Boron carbide (B4C) has been well studied both theoretically and experimentally in its bulk form due to its exceptional hardness and use as a high-temperature thermoelectric. However, the properties of its two-dimensional nanosheets are not well established. In this paper, using van der Waals-corrected density-functional theory simulations, we show that bulk B4C can be cleaved along different directions to form B4C nanosheets with low formation energies. We find that there is minimal dependence of formation energies on cleavage planes and surface terminations, even though the bulk is not van der Waals layered. This anomalous stability of B4C nanosheets is found to be a result of surface reconstructions that are unique to B-rich systems. While the density of states of the bulk B4C indicate that it is a semiconductor, the B4C nanosheets are found to be predominantly metallic. We attribute this metallic behavior to a redistribution of charges on the surface bonds of the films. The Seebeck coefficients of the B4C films remain comparable to those of the bulk and are nearly constant as a function of temperature. Our results provide guidance for experimental synthesis efforts and future application of B4C nanosheets in nanoelectronic and thermoelectric applications.
Free, publicly-accessible full text available December 28, 2023 -
Abstract A sensitive (1
σ rms ≤ 3 mK; 2 MHz resolution) 1 mm spectral survey (214.5–285.5 GHz) of the envelope of the oxygen-rich supergiant star NML Cygni (NML Cyg) has been conducted using the 10 m Submillimeter Telescope of the Arizona Radio Observatory. These data represent the first spectral line survey of NML Cyg and are complementary to a previous 1 mm survey of the envelope of a similar hypergiant, VY Canis Majoris (VY CMa). The complete NML Cyg data set is presented here. In the survey, 104 emission lines were observed, arising from 17 different molecules and 4 unidentified features. Many of the observed features have complex line profiles, arising from asymmetric outflows characteristic of hypergiant stars. While most of the lines in the survey arise from SiO, SO, SO2, and SiS, CO had the strongest emission. Five other C-bearing species are identified in the survey (HCN, CN, HCO+, CS, and HNC), demonstrating an active carbon chemistry despite the O-rich environment. Moreover, NS was observed, but not NO, although favorable transitions of both molecules lie in the surveyed region. Sulfur chemistry appears to be prominent in NML Cyg and plays an important role in the collimated outflows. The refractory speciesmore » -
Abstract The millimeter-wave spectrum of the SiP radical (X2Πi) has been measured in the laboratory for the first time using direct-absorption methods. SiP was created by the reaction of phosphorus vapor and SiH4in argon in an AC discharge. Fifteen rotational transitions (
J + 1 ←J ) were measured for SiP in the Ω = 3/2 ladder in the frequency range 151–533 GHz, and rotational, lambda doubling, and phosphorus hyperfine constants determined. Based on the laboratory measurements, SiP was detected in the circumstellar shell of IRC+10216, using the Submillimeter Telescope and the 12 m antenna of the Arizona Radio Observatory at 1 mm and 2 mm, respectively. Eight transitions of SiP were searched: four were completely obscured by stronger features, two were uncontaminated (J = 13.5 → 12.5 and 16.5 → 15.5), and two were partially blended with other lines (J = 8.5 → 7.5 and 17.5 → 16.5). The SiP line profiles were broader than expected for IRC+10216, consistent with the hyperfine splitting. From non-LTE radiative transfer modeling, SiP was found to have a shell distribution with a radius ∼300R *, and an abundance, relative to H2, off ∼ 2 × 10−9. From additional modeling, abundances of 7 × 10−9and 9 × 10−10were determined for CPmore » -
Abstract We present extensive optical photometry of the afterglow of GRB 221009A. Our data cover 0.9–59.9 days from the time of Swift and Fermi gamma-ray burst (GRB) detections. Photometry in rizy -band filters was collected primarily with Pan-STARRS and supplemented by multiple 1–4 m imaging facilities. We analyzed the Swift X-ray data of the afterglow and found a single decline rate power law f ( t ) ∝ t −1.556±0.002 best describes the light curve. In addition to the high foreground Milky Way dust extinction along this line of sight, the data favor additional extinction to consistently model the optical to X-ray flux with optically thin synchrotron emission. We fit the X-ray-derived power law to the optical light curve and find good agreement with the measured data up to 5−6 days. Thereafter we find a flux excess in the riy bands that peaks in the observer frame at ∼20 days. This excess shares similar light-curve profiles to the Type Ic broad-lined supernovae SN 2016jca and SN 2017iuk once corrected for the GRB redshift of z = 0.151 and arbitrarily scaled. This may be representative of an SN emerging from the declining afterglow. We measure rest-frame absolute peak AB magnitudes ofmore »Free, publicly-accessible full text available March 1, 2024